k2-fsa_sherpa-onnx/java-api-examples/NonStreamingDecodeFileSenseVoice.java
2024-07-22 14:08:40 +08:00

51 lines
1.6 KiB
Java

// Copyright 2024 Xiaomi Corporation
// This file shows how to use an offline SenseVoice model,
// i.e., non-streaming SenseVoice model,
// to decode files.
import com.k2fsa.sherpa.onnx.*;
public class NonStreamingDecodeFileSenseVoice {
public static void main(String[] args) {
// please refer to
// https://k2-fsa.github.io/sherpa/onnx/sense-voice/index.html
// to download model files
String model = "./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/model.int8.onnx";
String tokens = "./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/tokens.txt";
String waveFilename = "./sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17/test_wavs/zh.wav";
WaveReader reader = new WaveReader(waveFilename);
OfflineSenseVoiceModelConfig senseVoice =
OfflineSenseVoiceModelConfig.builder().setModel(model).build();
OfflineModelConfig modelConfig =
OfflineModelConfig.builder()
.setSenseVoice(senseVoice)
.setTokens(tokens)
.setNumThreads(1)
.setDebug(true)
.build();
OfflineRecognizerConfig config =
OfflineRecognizerConfig.builder()
.setOfflineModelConfig(modelConfig)
.setDecodingMethod("greedy_search")
.build();
OfflineRecognizer recognizer = new OfflineRecognizer(config);
OfflineStream stream = recognizer.createStream();
stream.acceptWaveform(reader.getSamples(), reader.getSampleRate());
recognizer.decode(stream);
String text = recognizer.getResult(stream).getText();
System.out.printf("filename:%s\nresult:%s\n", waveFilename, text);
stream.release();
recognizer.release();
}
}