mirror of
https://github.com/k2-fsa/sherpa-onnx.git
synced 2026-01-09 07:41:06 +08:00
468 lines
14 KiB
C++
468 lines
14 KiB
C++
// sherpa-onnx/csrc/online-zipformer2-transducer-model.cc
|
|
//
|
|
// Copyright (c) 2023 Xiaomi Corporation
|
|
|
|
#include "sherpa-onnx/csrc/online-zipformer2-transducer-model.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#if __ANDROID_API__ >= 9
|
|
#include "android/asset_manager.h"
|
|
#include "android/asset_manager_jni.h"
|
|
#endif
|
|
|
|
#include "onnxruntime_cxx_api.h" // NOLINT
|
|
#include "sherpa-onnx/csrc/cat.h"
|
|
#include "sherpa-onnx/csrc/macros.h"
|
|
#include "sherpa-onnx/csrc/online-transducer-decoder.h"
|
|
#include "sherpa-onnx/csrc/onnx-utils.h"
|
|
#include "sherpa-onnx/csrc/session.h"
|
|
#include "sherpa-onnx/csrc/text-utils.h"
|
|
#include "sherpa-onnx/csrc/unbind.h"
|
|
|
|
namespace sherpa_onnx {
|
|
|
|
OnlineZipformer2TransducerModel::OnlineZipformer2TransducerModel(
|
|
const OnlineModelConfig &config)
|
|
: env_(ORT_LOGGING_LEVEL_WARNING),
|
|
sess_opts_(GetSessionOptions(config)),
|
|
config_(config),
|
|
allocator_{} {
|
|
{
|
|
auto buf = ReadFile(config.transducer.encoder);
|
|
InitEncoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(config.transducer.decoder);
|
|
InitDecoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(config.transducer.joiner);
|
|
InitJoiner(buf.data(), buf.size());
|
|
}
|
|
}
|
|
|
|
#if __ANDROID_API__ >= 9
|
|
OnlineZipformer2TransducerModel::OnlineZipformer2TransducerModel(
|
|
AAssetManager *mgr, const OnlineModelConfig &config)
|
|
: env_(ORT_LOGGING_LEVEL_WARNING),
|
|
config_(config),
|
|
sess_opts_(GetSessionOptions(config)),
|
|
allocator_{} {
|
|
{
|
|
auto buf = ReadFile(mgr, config.transducer.encoder);
|
|
InitEncoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(mgr, config.transducer.decoder);
|
|
InitDecoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(mgr, config.transducer.joiner);
|
|
InitJoiner(buf.data(), buf.size());
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void OnlineZipformer2TransducerModel::InitEncoder(void *model_data,
|
|
size_t model_data_length) {
|
|
encoder_sess_ = std::make_unique<Ort::Session>(env_, model_data,
|
|
model_data_length, sess_opts_);
|
|
|
|
GetInputNames(encoder_sess_.get(), &encoder_input_names_,
|
|
&encoder_input_names_ptr_);
|
|
|
|
GetOutputNames(encoder_sess_.get(), &encoder_output_names_,
|
|
&encoder_output_names_ptr_);
|
|
|
|
// get meta data
|
|
Ort::ModelMetadata meta_data = encoder_sess_->GetModelMetadata();
|
|
if (config_.debug) {
|
|
std::ostringstream os;
|
|
os << "---encoder---\n";
|
|
PrintModelMetadata(os, meta_data);
|
|
SHERPA_ONNX_LOGE("%s", os.str().c_str());
|
|
}
|
|
|
|
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
|
|
SHERPA_ONNX_READ_META_DATA_VEC(encoder_dims_, "encoder_dims");
|
|
SHERPA_ONNX_READ_META_DATA_VEC(query_head_dims_, "query_head_dims");
|
|
SHERPA_ONNX_READ_META_DATA_VEC(value_head_dims_, "value_head_dims");
|
|
SHERPA_ONNX_READ_META_DATA_VEC(num_heads_, "num_heads");
|
|
SHERPA_ONNX_READ_META_DATA_VEC(num_encoder_layers_, "num_encoder_layers");
|
|
SHERPA_ONNX_READ_META_DATA_VEC(cnn_module_kernels_, "cnn_module_kernels");
|
|
SHERPA_ONNX_READ_META_DATA_VEC(left_context_len_, "left_context_len");
|
|
|
|
SHERPA_ONNX_READ_META_DATA(T_, "T");
|
|
SHERPA_ONNX_READ_META_DATA(decode_chunk_len_, "decode_chunk_len");
|
|
|
|
if (config_.debug) {
|
|
auto print = [](const std::vector<int32_t> &v, const char *name) {
|
|
std::ostringstream os;
|
|
os << name << ": ";
|
|
for (auto i : v) {
|
|
os << i << " ";
|
|
}
|
|
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
|
|
};
|
|
print(encoder_dims_, "encoder_dims");
|
|
print(query_head_dims_, "query_head_dims");
|
|
print(value_head_dims_, "value_head_dims");
|
|
print(num_heads_, "num_heads");
|
|
print(num_encoder_layers_, "num_encoder_layers");
|
|
print(cnn_module_kernels_, "cnn_module_kernels");
|
|
print(left_context_len_, "left_context_len");
|
|
SHERPA_ONNX_LOGE("T: %d", T_);
|
|
SHERPA_ONNX_LOGE("decode_chunk_len_: %d", decode_chunk_len_);
|
|
}
|
|
}
|
|
|
|
void OnlineZipformer2TransducerModel::InitDecoder(void *model_data,
|
|
size_t model_data_length) {
|
|
decoder_sess_ = std::make_unique<Ort::Session>(env_, model_data,
|
|
model_data_length, sess_opts_);
|
|
|
|
GetInputNames(decoder_sess_.get(), &decoder_input_names_,
|
|
&decoder_input_names_ptr_);
|
|
|
|
GetOutputNames(decoder_sess_.get(), &decoder_output_names_,
|
|
&decoder_output_names_ptr_);
|
|
|
|
// get meta data
|
|
Ort::ModelMetadata meta_data = decoder_sess_->GetModelMetadata();
|
|
if (config_.debug) {
|
|
std::ostringstream os;
|
|
os << "---decoder---\n";
|
|
PrintModelMetadata(os, meta_data);
|
|
SHERPA_ONNX_LOGE("%s", os.str().c_str());
|
|
}
|
|
|
|
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
|
|
SHERPA_ONNX_READ_META_DATA(vocab_size_, "vocab_size");
|
|
SHERPA_ONNX_READ_META_DATA(context_size_, "context_size");
|
|
}
|
|
|
|
void OnlineZipformer2TransducerModel::InitJoiner(void *model_data,
|
|
size_t model_data_length) {
|
|
joiner_sess_ = std::make_unique<Ort::Session>(env_, model_data,
|
|
model_data_length, sess_opts_);
|
|
|
|
GetInputNames(joiner_sess_.get(), &joiner_input_names_,
|
|
&joiner_input_names_ptr_);
|
|
|
|
GetOutputNames(joiner_sess_.get(), &joiner_output_names_,
|
|
&joiner_output_names_ptr_);
|
|
|
|
// get meta data
|
|
Ort::ModelMetadata meta_data = joiner_sess_->GetModelMetadata();
|
|
if (config_.debug) {
|
|
std::ostringstream os;
|
|
os << "---joiner---\n";
|
|
PrintModelMetadata(os, meta_data);
|
|
SHERPA_ONNX_LOGE("%s", os.str().c_str());
|
|
}
|
|
}
|
|
|
|
std::vector<Ort::Value> OnlineZipformer2TransducerModel::StackStates(
|
|
const std::vector<std::vector<Ort::Value>> &states) const {
|
|
int32_t batch_size = static_cast<int32_t>(states.size());
|
|
|
|
std::vector<const Ort::Value *> buf(batch_size);
|
|
|
|
std::vector<Ort::Value> ans;
|
|
int32_t num_states = static_cast<int32_t>(states[0].size());
|
|
ans.reserve(num_states);
|
|
|
|
for (int32_t i = 0; i != (num_states - 2) / 6; ++i) {
|
|
{
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][6 * i];
|
|
}
|
|
auto v = Cat(allocator_, buf, 1);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
{
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][6 * i + 1];
|
|
}
|
|
auto v = Cat(allocator_, buf, 1);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
{
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][6 * i + 2];
|
|
}
|
|
auto v = Cat(allocator_, buf, 1);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
{
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][6 * i + 3];
|
|
}
|
|
auto v = Cat(allocator_, buf, 1);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
{
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][6 * i + 4];
|
|
}
|
|
auto v = Cat(allocator_, buf, 0);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
{
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][6 * i + 5];
|
|
}
|
|
auto v = Cat(allocator_, buf, 0);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
}
|
|
|
|
{
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][num_states - 2];
|
|
}
|
|
auto v = Cat(allocator_, buf, 0);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
|
|
{
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][num_states - 1];
|
|
}
|
|
auto v = Cat<int64_t>(allocator_, buf, 0);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
return ans;
|
|
}
|
|
|
|
std::vector<std::vector<Ort::Value>>
|
|
OnlineZipformer2TransducerModel::UnStackStates(
|
|
const std::vector<Ort::Value> &states) const {
|
|
int32_t m = std::accumulate(num_encoder_layers_.begin(),
|
|
num_encoder_layers_.end(), 0);
|
|
assert(static_cast<int32_t>(states.size()) == m * 6 + 2);
|
|
|
|
int32_t batch_size = states[0].GetTensorTypeAndShapeInfo().GetShape()[1];
|
|
|
|
std::vector<std::vector<Ort::Value>> ans;
|
|
ans.resize(batch_size);
|
|
|
|
for (int32_t i = 0; i != m; ++i) {
|
|
{
|
|
auto v = Unbind(allocator_, &states[i * 6], 1);
|
|
assert(static_cast<int32_t>(v.size()) == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
{
|
|
auto v = Unbind(allocator_, &states[i * 6 + 1], 1);
|
|
assert(static_cast<int32_t>(v.size()) == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
{
|
|
auto v = Unbind(allocator_, &states[i * 6 + 2], 1);
|
|
assert(static_cast<int32_t>(v.size()) == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
{
|
|
auto v = Unbind(allocator_, &states[i * 6 + 3], 1);
|
|
assert(static_cast<int32_t>(v.size()) == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
{
|
|
auto v = Unbind(allocator_, &states[i * 6 + 4], 0);
|
|
assert(static_cast<int32_t>(v.size()) == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
{
|
|
auto v = Unbind(allocator_, &states[i * 6 + 5], 0);
|
|
assert(static_cast<int32_t>(v.size()) == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
auto v = Unbind(allocator_, &states[m * 6], 0);
|
|
assert(static_cast<int32_t>(v.size()) == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
{
|
|
auto v = Unbind<int64_t>(allocator_, &states[m * 6 + 1], 0);
|
|
assert(static_cast<int32_t>(v.size()) == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
|
|
return ans;
|
|
}
|
|
|
|
std::vector<Ort::Value>
|
|
OnlineZipformer2TransducerModel::GetEncoderInitStates() {
|
|
std::vector<Ort::Value> ans;
|
|
int32_t n = static_cast<int32_t>(encoder_dims_.size());
|
|
int32_t m = std::accumulate(num_encoder_layers_.begin(),
|
|
num_encoder_layers_.end(), 0);
|
|
ans.reserve(m * 6 + 2);
|
|
|
|
for (int32_t i = 0; i != n; ++i) {
|
|
int32_t num_layers = num_encoder_layers_[i];
|
|
int32_t key_dim = query_head_dims_[i] * num_heads_[i];
|
|
int32_t value_dim = value_head_dims_[i] * num_heads_[i];
|
|
int32_t nonlin_attn_head_dim = 3 * encoder_dims_[i] / 4;
|
|
|
|
for (int32_t j = 0; j != num_layers; ++j) {
|
|
{
|
|
std::array<int64_t, 3> s{left_context_len_[i], 1, key_dim};
|
|
auto v =
|
|
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
|
|
Fill(&v, 0);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
|
|
{
|
|
std::array<int64_t, 4> s{1, 1, left_context_len_[i],
|
|
nonlin_attn_head_dim};
|
|
auto v =
|
|
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
|
|
Fill(&v, 0);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
|
|
{
|
|
std::array<int64_t, 3> s{left_context_len_[i], 1, value_dim};
|
|
auto v =
|
|
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
|
|
Fill(&v, 0);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
|
|
{
|
|
std::array<int64_t, 3> s{left_context_len_[i], 1, value_dim};
|
|
auto v =
|
|
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
|
|
Fill(&v, 0);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
|
|
{
|
|
std::array<int64_t, 3> s{1, encoder_dims_[i],
|
|
cnn_module_kernels_[i] / 2};
|
|
auto v =
|
|
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
|
|
Fill(&v, 0);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
|
|
{
|
|
std::array<int64_t, 3> s{1, encoder_dims_[i],
|
|
cnn_module_kernels_[i] / 2};
|
|
auto v =
|
|
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
|
|
Fill(&v, 0);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
SHERPA_ONNX_CHECK_NE(feature_dim_, 0);
|
|
int32_t embed_dim = (((feature_dim_ - 1) / 2) - 1) / 2;
|
|
std::array<int64_t, 4> s{1, 128, 3, embed_dim};
|
|
|
|
auto v = Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
|
|
Fill(&v, 0);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
|
|
{
|
|
std::array<int64_t, 1> s{1};
|
|
auto v = Ort::Value::CreateTensor<int64_t>(allocator_, s.data(), s.size());
|
|
Fill<int64_t>(&v, 0);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
return ans;
|
|
}
|
|
|
|
std::pair<Ort::Value, std::vector<Ort::Value>>
|
|
OnlineZipformer2TransducerModel::RunEncoder(Ort::Value features,
|
|
std::vector<Ort::Value> states,
|
|
Ort::Value /* processed_frames */) {
|
|
std::vector<Ort::Value> encoder_inputs;
|
|
encoder_inputs.reserve(1 + states.size());
|
|
|
|
encoder_inputs.push_back(std::move(features));
|
|
for (auto &v : states) {
|
|
encoder_inputs.push_back(std::move(v));
|
|
}
|
|
|
|
auto encoder_out = encoder_sess_->Run(
|
|
{}, encoder_input_names_ptr_.data(), encoder_inputs.data(),
|
|
encoder_inputs.size(), encoder_output_names_ptr_.data(),
|
|
encoder_output_names_ptr_.size());
|
|
|
|
std::vector<Ort::Value> next_states;
|
|
next_states.reserve(states.size());
|
|
|
|
for (int32_t i = 1; i != static_cast<int32_t>(encoder_out.size()); ++i) {
|
|
next_states.push_back(std::move(encoder_out[i]));
|
|
}
|
|
return {std::move(encoder_out[0]), std::move(next_states)};
|
|
}
|
|
|
|
Ort::Value OnlineZipformer2TransducerModel::RunDecoder(
|
|
Ort::Value decoder_input) {
|
|
auto decoder_out = decoder_sess_->Run(
|
|
{}, decoder_input_names_ptr_.data(), &decoder_input, 1,
|
|
decoder_output_names_ptr_.data(), decoder_output_names_ptr_.size());
|
|
return std::move(decoder_out[0]);
|
|
}
|
|
|
|
Ort::Value OnlineZipformer2TransducerModel::RunJoiner(Ort::Value encoder_out,
|
|
Ort::Value decoder_out) {
|
|
std::array<Ort::Value, 2> joiner_input = {std::move(encoder_out),
|
|
std::move(decoder_out)};
|
|
auto logit =
|
|
joiner_sess_->Run({}, joiner_input_names_ptr_.data(), joiner_input.data(),
|
|
joiner_input.size(), joiner_output_names_ptr_.data(),
|
|
joiner_output_names_ptr_.size());
|
|
|
|
return std::move(logit[0]);
|
|
}
|
|
|
|
} // namespace sherpa_onnx
|