k2-fsa_sherpa-onnx/sherpa-onnx/csrc/online-zipformer2-transducer-model.cc
2024-06-19 20:51:57 +08:00

468 lines
14 KiB
C++

// sherpa-onnx/csrc/online-zipformer2-transducer-model.cc
//
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/online-zipformer2-transducer-model.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <memory>
#include <numeric>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#if __ANDROID_API__ >= 9
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif
#include "onnxruntime_cxx_api.h" // NOLINT
#include "sherpa-onnx/csrc/cat.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/online-transducer-decoder.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/session.h"
#include "sherpa-onnx/csrc/text-utils.h"
#include "sherpa-onnx/csrc/unbind.h"
namespace sherpa_onnx {
OnlineZipformer2TransducerModel::OnlineZipformer2TransducerModel(
const OnlineModelConfig &config)
: env_(ORT_LOGGING_LEVEL_WARNING),
sess_opts_(GetSessionOptions(config)),
config_(config),
allocator_{} {
{
auto buf = ReadFile(config.transducer.encoder);
InitEncoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(config.transducer.decoder);
InitDecoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(config.transducer.joiner);
InitJoiner(buf.data(), buf.size());
}
}
#if __ANDROID_API__ >= 9
OnlineZipformer2TransducerModel::OnlineZipformer2TransducerModel(
AAssetManager *mgr, const OnlineModelConfig &config)
: env_(ORT_LOGGING_LEVEL_WARNING),
config_(config),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
{
auto buf = ReadFile(mgr, config.transducer.encoder);
InitEncoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(mgr, config.transducer.decoder);
InitDecoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(mgr, config.transducer.joiner);
InitJoiner(buf.data(), buf.size());
}
}
#endif
void OnlineZipformer2TransducerModel::InitEncoder(void *model_data,
size_t model_data_length) {
encoder_sess_ = std::make_unique<Ort::Session>(env_, model_data,
model_data_length, sess_opts_);
GetInputNames(encoder_sess_.get(), &encoder_input_names_,
&encoder_input_names_ptr_);
GetOutputNames(encoder_sess_.get(), &encoder_output_names_,
&encoder_output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = encoder_sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
os << "---encoder---\n";
PrintModelMetadata(os, meta_data);
SHERPA_ONNX_LOGE("%s", os.str().c_str());
}
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA_VEC(encoder_dims_, "encoder_dims");
SHERPA_ONNX_READ_META_DATA_VEC(query_head_dims_, "query_head_dims");
SHERPA_ONNX_READ_META_DATA_VEC(value_head_dims_, "value_head_dims");
SHERPA_ONNX_READ_META_DATA_VEC(num_heads_, "num_heads");
SHERPA_ONNX_READ_META_DATA_VEC(num_encoder_layers_, "num_encoder_layers");
SHERPA_ONNX_READ_META_DATA_VEC(cnn_module_kernels_, "cnn_module_kernels");
SHERPA_ONNX_READ_META_DATA_VEC(left_context_len_, "left_context_len");
SHERPA_ONNX_READ_META_DATA(T_, "T");
SHERPA_ONNX_READ_META_DATA(decode_chunk_len_, "decode_chunk_len");
if (config_.debug) {
auto print = [](const std::vector<int32_t> &v, const char *name) {
std::ostringstream os;
os << name << ": ";
for (auto i : v) {
os << i << " ";
}
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
};
print(encoder_dims_, "encoder_dims");
print(query_head_dims_, "query_head_dims");
print(value_head_dims_, "value_head_dims");
print(num_heads_, "num_heads");
print(num_encoder_layers_, "num_encoder_layers");
print(cnn_module_kernels_, "cnn_module_kernels");
print(left_context_len_, "left_context_len");
SHERPA_ONNX_LOGE("T: %d", T_);
SHERPA_ONNX_LOGE("decode_chunk_len_: %d", decode_chunk_len_);
}
}
void OnlineZipformer2TransducerModel::InitDecoder(void *model_data,
size_t model_data_length) {
decoder_sess_ = std::make_unique<Ort::Session>(env_, model_data,
model_data_length, sess_opts_);
GetInputNames(decoder_sess_.get(), &decoder_input_names_,
&decoder_input_names_ptr_);
GetOutputNames(decoder_sess_.get(), &decoder_output_names_,
&decoder_output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = decoder_sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
os << "---decoder---\n";
PrintModelMetadata(os, meta_data);
SHERPA_ONNX_LOGE("%s", os.str().c_str());
}
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA(vocab_size_, "vocab_size");
SHERPA_ONNX_READ_META_DATA(context_size_, "context_size");
}
void OnlineZipformer2TransducerModel::InitJoiner(void *model_data,
size_t model_data_length) {
joiner_sess_ = std::make_unique<Ort::Session>(env_, model_data,
model_data_length, sess_opts_);
GetInputNames(joiner_sess_.get(), &joiner_input_names_,
&joiner_input_names_ptr_);
GetOutputNames(joiner_sess_.get(), &joiner_output_names_,
&joiner_output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = joiner_sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
os << "---joiner---\n";
PrintModelMetadata(os, meta_data);
SHERPA_ONNX_LOGE("%s", os.str().c_str());
}
}
std::vector<Ort::Value> OnlineZipformer2TransducerModel::StackStates(
const std::vector<std::vector<Ort::Value>> &states) const {
int32_t batch_size = static_cast<int32_t>(states.size());
std::vector<const Ort::Value *> buf(batch_size);
std::vector<Ort::Value> ans;
int32_t num_states = static_cast<int32_t>(states[0].size());
ans.reserve(num_states);
for (int32_t i = 0; i != (num_states - 2) / 6; ++i) {
{
for (int32_t n = 0; n != batch_size; ++n) {
buf[n] = &states[n][6 * i];
}
auto v = Cat(allocator_, buf, 1);
ans.push_back(std::move(v));
}
{
for (int32_t n = 0; n != batch_size; ++n) {
buf[n] = &states[n][6 * i + 1];
}
auto v = Cat(allocator_, buf, 1);
ans.push_back(std::move(v));
}
{
for (int32_t n = 0; n != batch_size; ++n) {
buf[n] = &states[n][6 * i + 2];
}
auto v = Cat(allocator_, buf, 1);
ans.push_back(std::move(v));
}
{
for (int32_t n = 0; n != batch_size; ++n) {
buf[n] = &states[n][6 * i + 3];
}
auto v = Cat(allocator_, buf, 1);
ans.push_back(std::move(v));
}
{
for (int32_t n = 0; n != batch_size; ++n) {
buf[n] = &states[n][6 * i + 4];
}
auto v = Cat(allocator_, buf, 0);
ans.push_back(std::move(v));
}
{
for (int32_t n = 0; n != batch_size; ++n) {
buf[n] = &states[n][6 * i + 5];
}
auto v = Cat(allocator_, buf, 0);
ans.push_back(std::move(v));
}
}
{
for (int32_t n = 0; n != batch_size; ++n) {
buf[n] = &states[n][num_states - 2];
}
auto v = Cat(allocator_, buf, 0);
ans.push_back(std::move(v));
}
{
for (int32_t n = 0; n != batch_size; ++n) {
buf[n] = &states[n][num_states - 1];
}
auto v = Cat<int64_t>(allocator_, buf, 0);
ans.push_back(std::move(v));
}
return ans;
}
std::vector<std::vector<Ort::Value>>
OnlineZipformer2TransducerModel::UnStackStates(
const std::vector<Ort::Value> &states) const {
int32_t m = std::accumulate(num_encoder_layers_.begin(),
num_encoder_layers_.end(), 0);
assert(static_cast<int32_t>(states.size()) == m * 6 + 2);
int32_t batch_size = states[0].GetTensorTypeAndShapeInfo().GetShape()[1];
std::vector<std::vector<Ort::Value>> ans;
ans.resize(batch_size);
for (int32_t i = 0; i != m; ++i) {
{
auto v = Unbind(allocator_, &states[i * 6], 1);
assert(static_cast<int32_t>(v.size()) == batch_size);
for (int32_t n = 0; n != batch_size; ++n) {
ans[n].push_back(std::move(v[n]));
}
}
{
auto v = Unbind(allocator_, &states[i * 6 + 1], 1);
assert(static_cast<int32_t>(v.size()) == batch_size);
for (int32_t n = 0; n != batch_size; ++n) {
ans[n].push_back(std::move(v[n]));
}
}
{
auto v = Unbind(allocator_, &states[i * 6 + 2], 1);
assert(static_cast<int32_t>(v.size()) == batch_size);
for (int32_t n = 0; n != batch_size; ++n) {
ans[n].push_back(std::move(v[n]));
}
}
{
auto v = Unbind(allocator_, &states[i * 6 + 3], 1);
assert(static_cast<int32_t>(v.size()) == batch_size);
for (int32_t n = 0; n != batch_size; ++n) {
ans[n].push_back(std::move(v[n]));
}
}
{
auto v = Unbind(allocator_, &states[i * 6 + 4], 0);
assert(static_cast<int32_t>(v.size()) == batch_size);
for (int32_t n = 0; n != batch_size; ++n) {
ans[n].push_back(std::move(v[n]));
}
}
{
auto v = Unbind(allocator_, &states[i * 6 + 5], 0);
assert(static_cast<int32_t>(v.size()) == batch_size);
for (int32_t n = 0; n != batch_size; ++n) {
ans[n].push_back(std::move(v[n]));
}
}
}
{
auto v = Unbind(allocator_, &states[m * 6], 0);
assert(static_cast<int32_t>(v.size()) == batch_size);
for (int32_t n = 0; n != batch_size; ++n) {
ans[n].push_back(std::move(v[n]));
}
}
{
auto v = Unbind<int64_t>(allocator_, &states[m * 6 + 1], 0);
assert(static_cast<int32_t>(v.size()) == batch_size);
for (int32_t n = 0; n != batch_size; ++n) {
ans[n].push_back(std::move(v[n]));
}
}
return ans;
}
std::vector<Ort::Value>
OnlineZipformer2TransducerModel::GetEncoderInitStates() {
std::vector<Ort::Value> ans;
int32_t n = static_cast<int32_t>(encoder_dims_.size());
int32_t m = std::accumulate(num_encoder_layers_.begin(),
num_encoder_layers_.end(), 0);
ans.reserve(m * 6 + 2);
for (int32_t i = 0; i != n; ++i) {
int32_t num_layers = num_encoder_layers_[i];
int32_t key_dim = query_head_dims_[i] * num_heads_[i];
int32_t value_dim = value_head_dims_[i] * num_heads_[i];
int32_t nonlin_attn_head_dim = 3 * encoder_dims_[i] / 4;
for (int32_t j = 0; j != num_layers; ++j) {
{
std::array<int64_t, 3> s{left_context_len_[i], 1, key_dim};
auto v =
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
Fill(&v, 0);
ans.push_back(std::move(v));
}
{
std::array<int64_t, 4> s{1, 1, left_context_len_[i],
nonlin_attn_head_dim};
auto v =
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
Fill(&v, 0);
ans.push_back(std::move(v));
}
{
std::array<int64_t, 3> s{left_context_len_[i], 1, value_dim};
auto v =
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
Fill(&v, 0);
ans.push_back(std::move(v));
}
{
std::array<int64_t, 3> s{left_context_len_[i], 1, value_dim};
auto v =
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
Fill(&v, 0);
ans.push_back(std::move(v));
}
{
std::array<int64_t, 3> s{1, encoder_dims_[i],
cnn_module_kernels_[i] / 2};
auto v =
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
Fill(&v, 0);
ans.push_back(std::move(v));
}
{
std::array<int64_t, 3> s{1, encoder_dims_[i],
cnn_module_kernels_[i] / 2};
auto v =
Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
Fill(&v, 0);
ans.push_back(std::move(v));
}
}
}
{
SHERPA_ONNX_CHECK_NE(feature_dim_, 0);
int32_t embed_dim = (((feature_dim_ - 1) / 2) - 1) / 2;
std::array<int64_t, 4> s{1, 128, 3, embed_dim};
auto v = Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
Fill(&v, 0);
ans.push_back(std::move(v));
}
{
std::array<int64_t, 1> s{1};
auto v = Ort::Value::CreateTensor<int64_t>(allocator_, s.data(), s.size());
Fill<int64_t>(&v, 0);
ans.push_back(std::move(v));
}
return ans;
}
std::pair<Ort::Value, std::vector<Ort::Value>>
OnlineZipformer2TransducerModel::RunEncoder(Ort::Value features,
std::vector<Ort::Value> states,
Ort::Value /* processed_frames */) {
std::vector<Ort::Value> encoder_inputs;
encoder_inputs.reserve(1 + states.size());
encoder_inputs.push_back(std::move(features));
for (auto &v : states) {
encoder_inputs.push_back(std::move(v));
}
auto encoder_out = encoder_sess_->Run(
{}, encoder_input_names_ptr_.data(), encoder_inputs.data(),
encoder_inputs.size(), encoder_output_names_ptr_.data(),
encoder_output_names_ptr_.size());
std::vector<Ort::Value> next_states;
next_states.reserve(states.size());
for (int32_t i = 1; i != static_cast<int32_t>(encoder_out.size()); ++i) {
next_states.push_back(std::move(encoder_out[i]));
}
return {std::move(encoder_out[0]), std::move(next_states)};
}
Ort::Value OnlineZipformer2TransducerModel::RunDecoder(
Ort::Value decoder_input) {
auto decoder_out = decoder_sess_->Run(
{}, decoder_input_names_ptr_.data(), &decoder_input, 1,
decoder_output_names_ptr_.data(), decoder_output_names_ptr_.size());
return std::move(decoder_out[0]);
}
Ort::Value OnlineZipformer2TransducerModel::RunJoiner(Ort::Value encoder_out,
Ort::Value decoder_out) {
std::array<Ort::Value, 2> joiner_input = {std::move(encoder_out),
std::move(decoder_out)};
auto logit =
joiner_sess_->Run({}, joiner_input_names_ptr_.data(), joiner_input.data(),
joiner_input.size(), joiner_output_names_ptr_.data(),
joiner_output_names_ptr_.size());
return std::move(logit[0]);
}
} // namespace sherpa_onnx