mirror of
https://github.com/k2-fsa/sherpa-onnx.git
synced 2026-01-09 07:41:06 +08:00
This PR adds support for T-one streaming Russian ASR models in both C++ and Python APIs. The T-one model is a CTC-based Russian speech recognition model with specific characteristics including float16 state handling, 300ms frame lengths, and 8kHz sampling rate. - Added new OnlineToneCtcModel implementation with specialized processing for T-one models - Integrated T-one support into the existing CTC model pipeline and Python bindings - Added Python example and test scripts for the new functionality
144 lines
4.4 KiB
C++
144 lines
4.4 KiB
C++
// sherpa-onnx/csrc/features.h
|
|
//
|
|
// Copyright (c) 2023 Xiaomi Corporation
|
|
|
|
#ifndef SHERPA_ONNX_CSRC_FEATURES_H_
|
|
#define SHERPA_ONNX_CSRC_FEATURES_H_
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "sherpa-onnx/csrc/parse-options.h"
|
|
|
|
namespace sherpa_onnx {
|
|
|
|
struct FeatureExtractorConfig {
|
|
// Sampling rate used by the feature extractor. If it is different from
|
|
// the sampling rate of the input waveform, we will do resampling inside.
|
|
int32_t sampling_rate = 16000;
|
|
|
|
// num_mel_bins
|
|
//
|
|
// Note: for mfcc, this value is also for num_mel_bins.
|
|
// The actual feature dimension is actuall num_ceps
|
|
int32_t feature_dim = 80;
|
|
|
|
// minimal frequency for Mel-filterbank, in Hz
|
|
float low_freq = 20.0f;
|
|
|
|
// maximal frequency of Mel-filterbank
|
|
// in Hz; negative value is subtracted from Nyquist freq.:
|
|
// i.e. for sampling_rate 16000 / 2 - 400 = 7600Hz
|
|
//
|
|
// Please see
|
|
// https://github.com/lhotse-speech/lhotse/blob/master/lhotse/features/fbank.py#L27
|
|
// and
|
|
// https://github.com/k2-fsa/sherpa-onnx/issues/514
|
|
float high_freq = -400.0f;
|
|
|
|
// dithering constant, useful for signals with hard-zeroes in non-speech parts
|
|
// this prevents large negative values in log-mel filterbanks
|
|
//
|
|
// In k2, audio samples are in range [-1..+1], in kaldi the range was
|
|
// [-32k..+32k], so the value 0.00003 is equivalent to kaldi default 1.0
|
|
//
|
|
float dither = 0.0f; // dithering disabled by default
|
|
|
|
// Set internally by some models, e.g., paraformer sets it to false.
|
|
// This parameter is not exposed to users from the commandline
|
|
// If true, the feature extractor expects inputs to be normalized to
|
|
// the range [-1, 1].
|
|
// If false, we will multiply the inputs by 32768
|
|
bool normalize_samples = true;
|
|
|
|
bool snip_edges = false;
|
|
float frame_shift_ms = 10.0f; // in milliseconds.
|
|
float frame_length_ms = 25.0f; // in milliseconds.
|
|
bool is_librosa = false;
|
|
bool remove_dc_offset = true; // Subtract mean of wave before FFT.
|
|
float preemph_coeff = 0.97f; // Preemphasis coefficient.
|
|
std::string window_type = "povey"; // e.g. Hamming window
|
|
|
|
// For models from NeMo
|
|
// This option is not exposed and is set internally when loading models.
|
|
// Possible values:
|
|
// - per_feature
|
|
// - all_features (not implemented yet)
|
|
// - fixed_mean (not implemented)
|
|
// - fixed_std (not implemented)
|
|
// - or just leave it to empty
|
|
// See
|
|
// https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/asr/parts/preprocessing/features.py#L59
|
|
// for details
|
|
std::string nemo_normalize_type;
|
|
|
|
// for MFCC
|
|
int32_t num_ceps = 13;
|
|
bool use_energy = true;
|
|
|
|
bool is_mfcc = false;
|
|
|
|
bool is_whisper = false;
|
|
|
|
bool is_t_one = false;
|
|
|
|
bool round_to_power_of_two = true;
|
|
|
|
std::string ToString() const;
|
|
|
|
void Register(ParseOptions *po);
|
|
};
|
|
|
|
class FeatureExtractor {
|
|
public:
|
|
explicit FeatureExtractor(const FeatureExtractorConfig &config = {});
|
|
~FeatureExtractor();
|
|
|
|
/**
|
|
@param sampling_rate The sampling_rate of the input waveform. If it does
|
|
not equal to config.sampling_rate, we will do
|
|
resampling inside.
|
|
@param waveform Pointer to a 1-D array of size n. It must be normalized to
|
|
the range [-1, 1].
|
|
@param n Number of entries in waveform
|
|
*/
|
|
void AcceptWaveform(int32_t sampling_rate, const float *waveform,
|
|
int32_t n) const;
|
|
|
|
/**
|
|
* InputFinished() tells the class you won't be providing any
|
|
* more waveform. This will help flush out the last frame or two
|
|
* of features, in the case where snip-edges == false; it also
|
|
* affects the return value of IsLastFrame().
|
|
*/
|
|
void InputFinished() const;
|
|
|
|
int32_t NumFramesReady() const;
|
|
|
|
/** Note: IsLastFrame() will only ever return true if you have called
|
|
* InputFinished() (and this frame is the last frame).
|
|
*/
|
|
bool IsLastFrame(int32_t frame) const;
|
|
|
|
/** Get n frames starting from the given frame index.
|
|
*
|
|
* @param frame_index The starting frame index
|
|
* @param n Number of frames to get.
|
|
* @return Return a 2-D tensor of shape (n, feature_dim).
|
|
* which is flattened into a 1-D vector (flattened in row major)
|
|
*/
|
|
std::vector<float> GetFrames(int32_t frame_index, int32_t n) const;
|
|
|
|
/// Return feature dim of this extractor
|
|
int32_t FeatureDim() const;
|
|
|
|
private:
|
|
class Impl;
|
|
std::unique_ptr<Impl> impl_;
|
|
};
|
|
|
|
} // namespace sherpa_onnx
|
|
|
|
#endif // SHERPA_ONNX_CSRC_FEATURES_H_
|