mirror of
https://github.com/k2-fsa/sherpa-onnx.git
synced 2026-01-09 07:41:06 +08:00
519 lines
16 KiB
C++
519 lines
16 KiB
C++
// sherpa-onnx/csrc/online-zipformer-transducer-model.cc
|
|
//
|
|
// Copyright (c) 2023 Xiaomi Corporation
|
|
|
|
#include "sherpa-onnx/csrc/online-zipformer-transducer-model.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#if __ANDROID_API__ >= 9
|
|
#include "android/asset_manager.h"
|
|
#include "android/asset_manager_jni.h"
|
|
#endif
|
|
|
|
#if __OHOS__
|
|
#include "rawfile/raw_file_manager.h"
|
|
#endif
|
|
|
|
#include "onnxruntime_cxx_api.h" // NOLINT
|
|
#include "sherpa-onnx/csrc/cat.h"
|
|
#include "sherpa-onnx/csrc/file-utils.h"
|
|
#include "sherpa-onnx/csrc/macros.h"
|
|
#include "sherpa-onnx/csrc/online-transducer-decoder.h"
|
|
#include "sherpa-onnx/csrc/onnx-utils.h"
|
|
#include "sherpa-onnx/csrc/session.h"
|
|
#include "sherpa-onnx/csrc/text-utils.h"
|
|
#include "sherpa-onnx/csrc/unbind.h"
|
|
|
|
namespace sherpa_onnx {
|
|
|
|
OnlineZipformerTransducerModel::OnlineZipformerTransducerModel(
|
|
const OnlineModelConfig &config)
|
|
: env_(ORT_LOGGING_LEVEL_ERROR),
|
|
config_(config),
|
|
sess_opts_(GetSessionOptions(config)),
|
|
allocator_{} {
|
|
{
|
|
auto buf = ReadFile(config.transducer.encoder);
|
|
InitEncoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(config.transducer.decoder);
|
|
InitDecoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(config.transducer.joiner);
|
|
InitJoiner(buf.data(), buf.size());
|
|
}
|
|
}
|
|
|
|
template <typename Manager>
|
|
OnlineZipformerTransducerModel::OnlineZipformerTransducerModel(
|
|
Manager *mgr, const OnlineModelConfig &config)
|
|
: env_(ORT_LOGGING_LEVEL_ERROR),
|
|
config_(config),
|
|
sess_opts_(GetSessionOptions(config)),
|
|
allocator_{} {
|
|
{
|
|
auto buf = ReadFile(mgr, config.transducer.encoder);
|
|
InitEncoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(mgr, config.transducer.decoder);
|
|
InitDecoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(mgr, config.transducer.joiner);
|
|
InitJoiner(buf.data(), buf.size());
|
|
}
|
|
}
|
|
|
|
void OnlineZipformerTransducerModel::InitEncoder(void *model_data,
|
|
size_t model_data_length) {
|
|
encoder_sess_ = std::make_unique<Ort::Session>(env_, model_data,
|
|
model_data_length, sess_opts_);
|
|
|
|
GetInputNames(encoder_sess_.get(), &encoder_input_names_,
|
|
&encoder_input_names_ptr_);
|
|
|
|
GetOutputNames(encoder_sess_.get(), &encoder_output_names_,
|
|
&encoder_output_names_ptr_);
|
|
|
|
// get meta data
|
|
Ort::ModelMetadata meta_data = encoder_sess_->GetModelMetadata();
|
|
if (config_.debug) {
|
|
std::ostringstream os;
|
|
os << "---encoder---\n";
|
|
PrintModelMetadata(os, meta_data);
|
|
#if __OHOS__
|
|
SHERPA_ONNX_LOGE("%{public}s", os.str().c_str());
|
|
#else
|
|
SHERPA_ONNX_LOGE("%s", os.str().c_str());
|
|
#endif
|
|
}
|
|
|
|
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
|
|
SHERPA_ONNX_READ_META_DATA_VEC(encoder_dims_, "encoder_dims");
|
|
SHERPA_ONNX_READ_META_DATA_VEC(attention_dims_, "attention_dims");
|
|
SHERPA_ONNX_READ_META_DATA_VEC(num_encoder_layers_, "num_encoder_layers");
|
|
SHERPA_ONNX_READ_META_DATA_VEC(cnn_module_kernels_, "cnn_module_kernels");
|
|
SHERPA_ONNX_READ_META_DATA_VEC(left_context_len_, "left_context_len");
|
|
|
|
SHERPA_ONNX_READ_META_DATA(T_, "T");
|
|
SHERPA_ONNX_READ_META_DATA(decode_chunk_len_, "decode_chunk_len");
|
|
|
|
if (config_.debug) {
|
|
auto print = [](const std::vector<int32_t> &v, const char *name) {
|
|
std::ostringstream os;
|
|
os << name << ": ";
|
|
for (auto i : v) {
|
|
os << i << " ";
|
|
}
|
|
#if __OHOS__
|
|
SHERPA_ONNX_LOGE("%{public}s\n", os.str().c_str());
|
|
#else
|
|
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
|
|
#endif
|
|
};
|
|
print(encoder_dims_, "encoder_dims");
|
|
print(attention_dims_, "attention_dims");
|
|
print(num_encoder_layers_, "num_encoder_layers");
|
|
print(cnn_module_kernels_, "cnn_module_kernels");
|
|
print(left_context_len_, "left_context_len");
|
|
#if __OHOS__
|
|
SHERPA_ONNX_LOGE("T: %{public}d", T_);
|
|
SHERPA_ONNX_LOGE("decode_chunk_len_: %{public}d", decode_chunk_len_);
|
|
#else
|
|
SHERPA_ONNX_LOGE("T: %d", T_);
|
|
SHERPA_ONNX_LOGE("decode_chunk_len_: %d", decode_chunk_len_);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void OnlineZipformerTransducerModel::InitDecoder(void *model_data,
|
|
size_t model_data_length) {
|
|
decoder_sess_ = std::make_unique<Ort::Session>(env_, model_data,
|
|
model_data_length, sess_opts_);
|
|
|
|
GetInputNames(decoder_sess_.get(), &decoder_input_names_,
|
|
&decoder_input_names_ptr_);
|
|
|
|
GetOutputNames(decoder_sess_.get(), &decoder_output_names_,
|
|
&decoder_output_names_ptr_);
|
|
|
|
// get meta data
|
|
Ort::ModelMetadata meta_data = decoder_sess_->GetModelMetadata();
|
|
if (config_.debug) {
|
|
std::ostringstream os;
|
|
os << "---decoder---\n";
|
|
PrintModelMetadata(os, meta_data);
|
|
#if __OHOS__
|
|
SHERPA_ONNX_LOGE("%{public}s", os.str().c_str());
|
|
#else
|
|
SHERPA_ONNX_LOGE("%s", os.str().c_str());
|
|
#endif
|
|
}
|
|
|
|
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
|
|
SHERPA_ONNX_READ_META_DATA(vocab_size_, "vocab_size");
|
|
SHERPA_ONNX_READ_META_DATA(context_size_, "context_size");
|
|
}
|
|
|
|
void OnlineZipformerTransducerModel::InitJoiner(void *model_data,
|
|
size_t model_data_length) {
|
|
joiner_sess_ = std::make_unique<Ort::Session>(env_, model_data,
|
|
model_data_length, sess_opts_);
|
|
|
|
GetInputNames(joiner_sess_.get(), &joiner_input_names_,
|
|
&joiner_input_names_ptr_);
|
|
|
|
GetOutputNames(joiner_sess_.get(), &joiner_output_names_,
|
|
&joiner_output_names_ptr_);
|
|
|
|
// get meta data
|
|
Ort::ModelMetadata meta_data = joiner_sess_->GetModelMetadata();
|
|
if (config_.debug) {
|
|
std::ostringstream os;
|
|
os << "---joiner---\n";
|
|
PrintModelMetadata(os, meta_data);
|
|
#if __OHOS__
|
|
SHERPA_ONNX_LOGE("%{public}s", os.str().c_str());
|
|
#else
|
|
SHERPA_ONNX_LOGE("%s", os.str().c_str());
|
|
#endif
|
|
}
|
|
}
|
|
|
|
std::vector<Ort::Value> OnlineZipformerTransducerModel::StackStates(
|
|
const std::vector<std::vector<Ort::Value>> &states) const {
|
|
int32_t batch_size = static_cast<int32_t>(states.size());
|
|
int32_t num_encoders = static_cast<int32_t>(num_encoder_layers_.size());
|
|
|
|
std::vector<const Ort::Value *> buf(batch_size);
|
|
|
|
std::vector<Ort::Value> ans;
|
|
ans.reserve(states[0].size());
|
|
|
|
auto allocator =
|
|
const_cast<OnlineZipformerTransducerModel *>(this)->allocator_;
|
|
|
|
// cached_len
|
|
for (int32_t i = 0; i != num_encoders; ++i) {
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][i];
|
|
}
|
|
auto v = Cat<int64_t>(allocator, buf, 1); // (num_layers, 1)
|
|
ans.push_back(std::move(v));
|
|
}
|
|
|
|
// cached_avg
|
|
for (int32_t i = 0; i != num_encoders; ++i) {
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][num_encoders + i];
|
|
}
|
|
auto v = Cat(allocator, buf, 1); // (num_layers, 1, encoder_dims)
|
|
ans.push_back(std::move(v));
|
|
}
|
|
|
|
// cached_key
|
|
for (int32_t i = 0; i != num_encoders; ++i) {
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][num_encoders * 2 + i];
|
|
}
|
|
// (num_layers, left_context_len, 1, attention_dims)
|
|
auto v = Cat(allocator, buf, 2);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
|
|
// cached_val
|
|
for (int32_t i = 0; i != num_encoders; ++i) {
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][num_encoders * 3 + i];
|
|
}
|
|
// (num_layers, left_context_len, 1, attention_dims/2)
|
|
auto v = Cat(allocator, buf, 2);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
|
|
// cached_val2
|
|
for (int32_t i = 0; i != num_encoders; ++i) {
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][num_encoders * 4 + i];
|
|
}
|
|
// (num_layers, left_context_len, 1, attention_dims/2)
|
|
auto v = Cat(allocator, buf, 2);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
|
|
// cached_conv1
|
|
for (int32_t i = 0; i != num_encoders; ++i) {
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][num_encoders * 5 + i];
|
|
}
|
|
// (num_layers, 1, encoder_dims, cnn_module_kernels-1)
|
|
auto v = Cat(allocator, buf, 1);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
|
|
// cached_conv2
|
|
for (int32_t i = 0; i != num_encoders; ++i) {
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
buf[n] = &states[n][num_encoders * 6 + i];
|
|
}
|
|
// (num_layers, 1, encoder_dims, cnn_module_kernels-1)
|
|
auto v = Cat(allocator, buf, 1);
|
|
ans.push_back(std::move(v));
|
|
}
|
|
|
|
return ans;
|
|
}
|
|
|
|
std::vector<std::vector<Ort::Value>>
|
|
OnlineZipformerTransducerModel::UnStackStates(
|
|
const std::vector<Ort::Value> &states) const {
|
|
assert(states.size() == num_encoder_layers_.size() * 7);
|
|
|
|
int32_t batch_size = states[0].GetTensorTypeAndShapeInfo().GetShape()[1];
|
|
int32_t num_encoders = num_encoder_layers_.size();
|
|
|
|
auto allocator =
|
|
const_cast<OnlineZipformerTransducerModel *>(this)->allocator_;
|
|
|
|
std::vector<std::vector<Ort::Value>> ans;
|
|
ans.resize(batch_size);
|
|
|
|
// cached_len
|
|
for (int32_t i = 0; i != num_encoders; ++i) {
|
|
auto v = Unbind<int64_t>(allocator, &states[i], 1);
|
|
assert(v.size() == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
|
|
// cached_avg
|
|
for (int32_t i = num_encoders; i != 2 * num_encoders; ++i) {
|
|
auto v = Unbind(allocator, &states[i], 1);
|
|
assert(v.size() == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
|
|
// cached_key
|
|
for (int32_t i = 2 * num_encoders; i != 3 * num_encoders; ++i) {
|
|
auto v = Unbind(allocator, &states[i], 2);
|
|
assert(v.size() == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
|
|
// cached_val
|
|
for (int32_t i = 3 * num_encoders; i != 4 * num_encoders; ++i) {
|
|
auto v = Unbind(allocator, &states[i], 2);
|
|
assert(v.size() == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
|
|
// cached_val2
|
|
for (int32_t i = 4 * num_encoders; i != 5 * num_encoders; ++i) {
|
|
auto v = Unbind(allocator, &states[i], 2);
|
|
assert(v.size() == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
|
|
// cached_conv1
|
|
for (int32_t i = 5 * num_encoders; i != 6 * num_encoders; ++i) {
|
|
auto v = Unbind(allocator, &states[i], 1);
|
|
assert(v.size() == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
|
|
// cached_conv2
|
|
for (int32_t i = 6 * num_encoders; i != 7 * num_encoders; ++i) {
|
|
auto v = Unbind(allocator, &states[i], 1);
|
|
assert(v.size() == batch_size);
|
|
|
|
for (int32_t n = 0; n != batch_size; ++n) {
|
|
ans[n].push_back(std::move(v[n]));
|
|
}
|
|
}
|
|
|
|
return ans;
|
|
}
|
|
|
|
std::vector<Ort::Value> OnlineZipformerTransducerModel::GetEncoderInitStates() {
|
|
// Please see
|
|
// https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_transducer_stateless7_streaming/zipformer.py#L673
|
|
// for details
|
|
|
|
int32_t n = static_cast<int32_t>(encoder_dims_.size());
|
|
std::vector<Ort::Value> cached_len_vec;
|
|
std::vector<Ort::Value> cached_avg_vec;
|
|
std::vector<Ort::Value> cached_key_vec;
|
|
std::vector<Ort::Value> cached_val_vec;
|
|
std::vector<Ort::Value> cached_val2_vec;
|
|
std::vector<Ort::Value> cached_conv1_vec;
|
|
std::vector<Ort::Value> cached_conv2_vec;
|
|
|
|
cached_len_vec.reserve(n);
|
|
cached_avg_vec.reserve(n);
|
|
cached_key_vec.reserve(n);
|
|
cached_val_vec.reserve(n);
|
|
cached_val2_vec.reserve(n);
|
|
cached_conv1_vec.reserve(n);
|
|
cached_conv2_vec.reserve(n);
|
|
|
|
for (int32_t i = 0; i != n; ++i) {
|
|
{
|
|
std::array<int64_t, 2> s{num_encoder_layers_[i], 1};
|
|
auto v =
|
|
Ort::Value::CreateTensor<int64_t>(allocator_, s.data(), s.size());
|
|
Fill<int64_t>(&v, 0);
|
|
cached_len_vec.push_back(std::move(v));
|
|
}
|
|
|
|
{
|
|
std::array<int64_t, 3> s{num_encoder_layers_[i], 1, encoder_dims_[i]};
|
|
auto v = Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
|
|
Fill(&v, 0);
|
|
cached_avg_vec.push_back(std::move(v));
|
|
}
|
|
|
|
{
|
|
std::array<int64_t, 4> s{num_encoder_layers_[i], left_context_len_[i], 1,
|
|
attention_dims_[i]};
|
|
auto v = Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
|
|
Fill(&v, 0);
|
|
cached_key_vec.push_back(std::move(v));
|
|
}
|
|
|
|
{
|
|
std::array<int64_t, 4> s{num_encoder_layers_[i], left_context_len_[i], 1,
|
|
attention_dims_[i] / 2};
|
|
auto v = Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
|
|
Fill(&v, 0);
|
|
cached_val_vec.push_back(std::move(v));
|
|
}
|
|
|
|
{
|
|
std::array<int64_t, 4> s{num_encoder_layers_[i], left_context_len_[i], 1,
|
|
attention_dims_[i] / 2};
|
|
auto v = Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
|
|
Fill(&v, 0);
|
|
cached_val2_vec.push_back(std::move(v));
|
|
}
|
|
|
|
{
|
|
std::array<int64_t, 4> s{num_encoder_layers_[i], 1, encoder_dims_[i],
|
|
cnn_module_kernels_[i] - 1};
|
|
auto v = Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
|
|
Fill(&v, 0);
|
|
cached_conv1_vec.push_back(std::move(v));
|
|
}
|
|
|
|
{
|
|
std::array<int64_t, 4> s{num_encoder_layers_[i], 1, encoder_dims_[i],
|
|
cnn_module_kernels_[i] - 1};
|
|
auto v = Ort::Value::CreateTensor<float>(allocator_, s.data(), s.size());
|
|
Fill(&v, 0);
|
|
cached_conv2_vec.push_back(std::move(v));
|
|
}
|
|
}
|
|
|
|
std::vector<Ort::Value> ans;
|
|
ans.reserve(n * 7);
|
|
|
|
for (auto &v : cached_len_vec) ans.push_back(std::move(v));
|
|
for (auto &v : cached_avg_vec) ans.push_back(std::move(v));
|
|
for (auto &v : cached_key_vec) ans.push_back(std::move(v));
|
|
for (auto &v : cached_val_vec) ans.push_back(std::move(v));
|
|
for (auto &v : cached_val2_vec) ans.push_back(std::move(v));
|
|
for (auto &v : cached_conv1_vec) ans.push_back(std::move(v));
|
|
for (auto &v : cached_conv2_vec) ans.push_back(std::move(v));
|
|
|
|
return ans;
|
|
}
|
|
|
|
std::pair<Ort::Value, std::vector<Ort::Value>>
|
|
OnlineZipformerTransducerModel::RunEncoder(Ort::Value features,
|
|
std::vector<Ort::Value> states,
|
|
Ort::Value /* processed_frames */) {
|
|
std::vector<Ort::Value> encoder_inputs;
|
|
encoder_inputs.reserve(1 + states.size());
|
|
|
|
encoder_inputs.push_back(std::move(features));
|
|
for (auto &v : states) {
|
|
encoder_inputs.push_back(std::move(v));
|
|
}
|
|
|
|
auto encoder_out = encoder_sess_->Run(
|
|
{}, encoder_input_names_ptr_.data(), encoder_inputs.data(),
|
|
encoder_inputs.size(), encoder_output_names_ptr_.data(),
|
|
encoder_output_names_ptr_.size());
|
|
|
|
std::vector<Ort::Value> next_states;
|
|
next_states.reserve(states.size());
|
|
|
|
for (int32_t i = 1; i != static_cast<int32_t>(encoder_out.size()); ++i) {
|
|
next_states.push_back(std::move(encoder_out[i]));
|
|
}
|
|
|
|
return {std::move(encoder_out[0]), std::move(next_states)};
|
|
}
|
|
|
|
Ort::Value OnlineZipformerTransducerModel::RunDecoder(
|
|
Ort::Value decoder_input) {
|
|
auto decoder_out = decoder_sess_->Run(
|
|
{}, decoder_input_names_ptr_.data(), &decoder_input, 1,
|
|
decoder_output_names_ptr_.data(), decoder_output_names_ptr_.size());
|
|
return std::move(decoder_out[0]);
|
|
}
|
|
|
|
Ort::Value OnlineZipformerTransducerModel::RunJoiner(Ort::Value encoder_out,
|
|
Ort::Value decoder_out) {
|
|
std::array<Ort::Value, 2> joiner_input = {std::move(encoder_out),
|
|
std::move(decoder_out)};
|
|
auto logit =
|
|
joiner_sess_->Run({}, joiner_input_names_ptr_.data(), joiner_input.data(),
|
|
joiner_input.size(), joiner_output_names_ptr_.data(),
|
|
joiner_output_names_ptr_.size());
|
|
|
|
return std::move(logit[0]);
|
|
}
|
|
|
|
#if __ANDROID_API__ >= 9
|
|
template OnlineZipformerTransducerModel::OnlineZipformerTransducerModel(
|
|
AAssetManager *mgr, const OnlineModelConfig &config);
|
|
#endif
|
|
|
|
#if __OHOS__
|
|
template OnlineZipformerTransducerModel::OnlineZipformerTransducerModel(
|
|
NativeResourceManager *mgr, const OnlineModelConfig &config);
|
|
#endif
|
|
|
|
} // namespace sherpa_onnx
|