k2-fsa_sherpa-onnx/sherpa-onnx/csrc/online-transducer-nemo-model.cc

549 lines
16 KiB
C++

// sherpa-onnx/csrc/online-transducer-nemo-model.cc
//
// Copyright (c) 2024 Xiaomi Corporation
// Copyright (c) 2024 Sangeet Sagar
#include "sherpa-onnx/csrc/online-transducer-nemo-model.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <memory>
#include <numeric>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#if __ANDROID_API__ >= 9
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif
#if __OHOS__
#include "rawfile/raw_file_manager.h"
#endif
#include "sherpa-onnx/csrc/cat.h"
#include "sherpa-onnx/csrc/file-utils.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/online-transducer-decoder.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/session.h"
#include "sherpa-onnx/csrc/text-utils.h"
#include "sherpa-onnx/csrc/transpose.h"
#include "sherpa-onnx/csrc/unbind.h"
namespace sherpa_onnx {
class OnlineTransducerNeMoModel::Impl {
public:
explicit Impl(const OnlineModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
{
auto buf = ReadFile(config.transducer.encoder);
InitEncoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(config.transducer.decoder);
InitDecoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(config.transducer.joiner);
InitJoiner(buf.data(), buf.size());
}
}
template <typename Manager>
Impl(Manager *mgr, const OnlineModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
{
auto buf = ReadFile(mgr, config.transducer.encoder);
InitEncoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(mgr, config.transducer.decoder);
InitDecoder(buf.data(), buf.size());
}
{
auto buf = ReadFile(mgr, config.transducer.joiner);
InitJoiner(buf.data(), buf.size());
}
}
std::vector<Ort::Value> RunEncoder(Ort::Value features,
std::vector<Ort::Value> states) {
Ort::Value &cache_last_channel = states[0];
Ort::Value &cache_last_time = states[1];
Ort::Value &cache_last_channel_len = states[2];
int32_t batch_size = features.GetTensorTypeAndShapeInfo().GetShape()[0];
std::array<int64_t, 1> length_shape{batch_size};
Ort::Value length = Ort::Value::CreateTensor<int64_t>(
allocator_, length_shape.data(), length_shape.size());
int64_t *p_length = length.GetTensorMutableData<int64_t>();
std::fill(p_length, p_length + batch_size, ChunkSize());
// (B, T, C) -> (B, C, T)
features = Transpose12(allocator_, &features);
std::array<Ort::Value, 5> inputs = {
std::move(features), View(&length), std::move(cache_last_channel),
std::move(cache_last_time), std::move(cache_last_channel_len)};
auto out = encoder_sess_->Run(
{}, encoder_input_names_ptr_.data(), inputs.data(), inputs.size(),
encoder_output_names_ptr_.data(), encoder_output_names_ptr_.size());
// out[0]: logit
// out[1] logit_length
// out[2:] states_next
//
// we need to remove out[1]
std::vector<Ort::Value> ans;
ans.reserve(out.size() - 1);
for (int32_t i = 0; i != out.size(); ++i) {
if (i == 1) {
continue;
}
ans.push_back(std::move(out[i]));
}
return ans;
}
std::pair<Ort::Value, std::vector<Ort::Value>> RunDecoder(
Ort::Value targets, std::vector<Ort::Value> states) {
Ort::MemoryInfo memory_info =
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
auto shape = targets.GetTensorTypeAndShapeInfo().GetShape();
int32_t batch_size = static_cast<int32_t>(shape[0]);
std::vector<int64_t> length_shape = {batch_size};
std::vector<int32_t> length_value(batch_size, 1);
Ort::Value targets_length = Ort::Value::CreateTensor<int32_t>(
memory_info, length_value.data(), batch_size, length_shape.data(),
length_shape.size());
std::vector<Ort::Value> decoder_inputs;
decoder_inputs.reserve(2 + states.size());
decoder_inputs.push_back(std::move(targets));
decoder_inputs.push_back(std::move(targets_length));
for (auto &s : states) {
decoder_inputs.push_back(std::move(s));
}
auto decoder_out = decoder_sess_->Run(
{}, decoder_input_names_ptr_.data(), decoder_inputs.data(),
decoder_inputs.size(), decoder_output_names_ptr_.data(),
decoder_output_names_ptr_.size());
std::vector<Ort::Value> states_next;
states_next.reserve(states.size());
// decoder_out[0]: decoder_output
// decoder_out[1]: decoder_output_length (discarded)
// decoder_out[2:] states_next
for (int32_t i = 0; i != states.size(); ++i) {
states_next.push_back(std::move(decoder_out[i + 2]));
}
// we discard decoder_out[1]
return {std::move(decoder_out[0]), std::move(states_next)};
}
Ort::Value RunJoiner(Ort::Value encoder_out, Ort::Value decoder_out) {
std::array<Ort::Value, 2> joiner_input = {std::move(encoder_out),
std::move(decoder_out)};
auto logit = joiner_sess_->Run({}, joiner_input_names_ptr_.data(),
joiner_input.data(), joiner_input.size(),
joiner_output_names_ptr_.data(),
joiner_output_names_ptr_.size());
return std::move(logit[0]);
}
std::vector<Ort::Value> GetDecoderInitStates() {
std::vector<Ort::Value> ans;
ans.reserve(2);
ans.push_back(View(&lstm0_));
ans.push_back(View(&lstm1_));
return ans;
}
int32_t ChunkSize() const { return window_size_; }
int32_t ChunkShift() const { return chunk_shift_; }
int32_t SubsamplingFactor() const { return subsampling_factor_; }
int32_t VocabSize() const { return vocab_size_; }
OrtAllocator *Allocator() { return allocator_; }
std::string FeatureNormalizationMethod() const { return normalize_type_; }
// Return a vector containing 3 tensors
// - cache_last_channel
// - cache_last_time_
// - cache_last_channel_len
std::vector<Ort::Value> GetEncoderInitStates() {
std::vector<Ort::Value> ans;
ans.reserve(3);
ans.push_back(View(&cache_last_channel_));
ans.push_back(View(&cache_last_time_));
ans.push_back(View(&cache_last_channel_len_));
return ans;
}
std::vector<Ort::Value> StackStates(
std::vector<std::vector<Ort::Value>> states) const {
int32_t batch_size = static_cast<int32_t>(states.size());
if (batch_size == 1) {
return std::move(states[0]);
}
std::vector<Ort::Value> ans;
auto allocator = const_cast<Impl *>(this)->allocator_;
// stack cache_last_channel
std::vector<const Ort::Value *> buf(batch_size);
// there are 3 states to be stacked
for (int32_t i = 0; i != 3; ++i) {
buf.clear();
buf.reserve(batch_size);
for (int32_t b = 0; b != batch_size; ++b) {
assert(states[b].size() == 3);
buf.push_back(&states[b][i]);
}
Ort::Value c{nullptr};
if (i == 2) {
c = Cat<int64_t>(allocator, buf, 0);
} else {
c = Cat(allocator, buf, 0);
}
ans.push_back(std::move(c));
}
return ans;
}
std::vector<std::vector<Ort::Value>> UnStackStates(
std::vector<Ort::Value> states) {
assert(states.size() == 3);
std::vector<std::vector<Ort::Value>> ans;
auto shape = states[0].GetTensorTypeAndShapeInfo().GetShape();
int32_t batch_size = shape[0];
ans.resize(batch_size);
if (batch_size == 1) {
ans[0] = std::move(states);
return ans;
}
for (int32_t i = 0; i != 3; ++i) {
std::vector<Ort::Value> v;
if (i == 2) {
v = Unbind<int64_t>(allocator_, &states[i], 0);
} else {
v = Unbind(allocator_, &states[i], 0);
}
assert(v.size() == batch_size);
for (int32_t b = 0; b != batch_size; ++b) {
ans[b].push_back(std::move(v[b]));
}
}
return ans;
}
private:
void InitEncoder(void *model_data, size_t model_data_length) {
encoder_sess_ = std::make_unique<Ort::Session>(
env_, model_data, model_data_length, sess_opts_);
GetInputNames(encoder_sess_.get(), &encoder_input_names_,
&encoder_input_names_ptr_);
GetOutputNames(encoder_sess_.get(), &encoder_output_names_,
&encoder_output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = encoder_sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
os << "---encoder---\n";
PrintModelMetadata(os, meta_data);
#if __OHOS__
SHERPA_ONNX_LOGE("%{public}s", os.str().c_str());
#else
SHERPA_ONNX_LOGE("%s", os.str().c_str());
#endif
}
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA(vocab_size_, "vocab_size");
// need to increase by 1 since the blank token is not included in computing
// vocab_size in NeMo.
vocab_size_ += 1;
SHERPA_ONNX_READ_META_DATA(window_size_, "window_size");
SHERPA_ONNX_READ_META_DATA(chunk_shift_, "chunk_shift");
SHERPA_ONNX_READ_META_DATA(subsampling_factor_, "subsampling_factor");
SHERPA_ONNX_READ_META_DATA_STR(normalize_type_, "normalize_type");
SHERPA_ONNX_READ_META_DATA(pred_rnn_layers_, "pred_rnn_layers");
SHERPA_ONNX_READ_META_DATA(pred_hidden_, "pred_hidden");
SHERPA_ONNX_READ_META_DATA(cache_last_channel_dim1_,
"cache_last_channel_dim1");
SHERPA_ONNX_READ_META_DATA(cache_last_channel_dim2_,
"cache_last_channel_dim2");
SHERPA_ONNX_READ_META_DATA(cache_last_channel_dim3_,
"cache_last_channel_dim3");
SHERPA_ONNX_READ_META_DATA(cache_last_time_dim1_, "cache_last_time_dim1");
SHERPA_ONNX_READ_META_DATA(cache_last_time_dim2_, "cache_last_time_dim2");
SHERPA_ONNX_READ_META_DATA(cache_last_time_dim3_, "cache_last_time_dim3");
if (normalize_type_ == "NA") {
normalize_type_ = "";
}
InitEncoderStates();
}
void InitEncoderStates() {
std::array<int64_t, 4> cache_last_channel_shape{1, cache_last_channel_dim1_,
cache_last_channel_dim2_,
cache_last_channel_dim3_};
cache_last_channel_ = Ort::Value::CreateTensor<float>(
allocator_, cache_last_channel_shape.data(),
cache_last_channel_shape.size());
Fill<float>(&cache_last_channel_, 0);
std::array<int64_t, 4> cache_last_time_shape{
1, cache_last_time_dim1_, cache_last_time_dim2_, cache_last_time_dim3_};
cache_last_time_ = Ort::Value::CreateTensor<float>(
allocator_, cache_last_time_shape.data(), cache_last_time_shape.size());
Fill<float>(&cache_last_time_, 0);
int64_t shape = 1;
cache_last_channel_len_ =
Ort::Value::CreateTensor<int64_t>(allocator_, &shape, 1);
cache_last_channel_len_.GetTensorMutableData<int64_t>()[0] = 0;
}
void InitDecoder(void *model_data, size_t model_data_length) {
decoder_sess_ = std::make_unique<Ort::Session>(
env_, model_data, model_data_length, sess_opts_);
GetInputNames(decoder_sess_.get(), &decoder_input_names_,
&decoder_input_names_ptr_);
GetOutputNames(decoder_sess_.get(), &decoder_output_names_,
&decoder_output_names_ptr_);
InitDecoderStates();
}
void InitDecoderStates() {
int32_t batch_size = 1;
std::array<int64_t, 3> s0_shape{pred_rnn_layers_, batch_size, pred_hidden_};
lstm0_ = Ort::Value::CreateTensor<float>(allocator_, s0_shape.data(),
s0_shape.size());
Fill<float>(&lstm0_, 0);
std::array<int64_t, 3> s1_shape{pred_rnn_layers_, batch_size, pred_hidden_};
lstm1_ = Ort::Value::CreateTensor<float>(allocator_, s1_shape.data(),
s1_shape.size());
Fill<float>(&lstm1_, 0);
}
void InitJoiner(void *model_data, size_t model_data_length) {
joiner_sess_ = std::make_unique<Ort::Session>(
env_, model_data, model_data_length, sess_opts_);
GetInputNames(joiner_sess_.get(), &joiner_input_names_,
&joiner_input_names_ptr_);
GetOutputNames(joiner_sess_.get(), &joiner_output_names_,
&joiner_output_names_ptr_);
}
private:
OnlineModelConfig config_;
Ort::Env env_;
Ort::SessionOptions sess_opts_;
Ort::AllocatorWithDefaultOptions allocator_;
std::unique_ptr<Ort::Session> encoder_sess_;
std::unique_ptr<Ort::Session> decoder_sess_;
std::unique_ptr<Ort::Session> joiner_sess_;
std::vector<std::string> encoder_input_names_;
std::vector<const char *> encoder_input_names_ptr_;
std::vector<std::string> encoder_output_names_;
std::vector<const char *> encoder_output_names_ptr_;
std::vector<std::string> decoder_input_names_;
std::vector<const char *> decoder_input_names_ptr_;
std::vector<std::string> decoder_output_names_;
std::vector<const char *> decoder_output_names_ptr_;
std::vector<std::string> joiner_input_names_;
std::vector<const char *> joiner_input_names_ptr_;
std::vector<std::string> joiner_output_names_;
std::vector<const char *> joiner_output_names_ptr_;
int32_t window_size_ = 0;
int32_t chunk_shift_ = 0;
int32_t vocab_size_ = 0;
int32_t subsampling_factor_ = 8;
std::string normalize_type_;
int32_t pred_rnn_layers_ = -1;
int32_t pred_hidden_ = -1;
// encoder states
int32_t cache_last_channel_dim1_ = 0;
int32_t cache_last_channel_dim2_ = 0;
int32_t cache_last_channel_dim3_ = 0;
int32_t cache_last_time_dim1_ = 0;
int32_t cache_last_time_dim2_ = 0;
int32_t cache_last_time_dim3_ = 0;
// init encoder states
Ort::Value cache_last_channel_{nullptr};
Ort::Value cache_last_time_{nullptr};
Ort::Value cache_last_channel_len_{nullptr};
// init decoder states
Ort::Value lstm0_{nullptr};
Ort::Value lstm1_{nullptr};
};
OnlineTransducerNeMoModel::OnlineTransducerNeMoModel(
const OnlineModelConfig &config)
: impl_(std::make_unique<Impl>(config)) {}
template <typename Manager>
OnlineTransducerNeMoModel::OnlineTransducerNeMoModel(
Manager *mgr, const OnlineModelConfig &config)
: impl_(std::make_unique<Impl>(mgr, config)) {}
OnlineTransducerNeMoModel::~OnlineTransducerNeMoModel() = default;
std::vector<Ort::Value> OnlineTransducerNeMoModel::RunEncoder(
Ort::Value features, std::vector<Ort::Value> states) const {
return impl_->RunEncoder(std::move(features), std::move(states));
}
std::pair<Ort::Value, std::vector<Ort::Value>>
OnlineTransducerNeMoModel::RunDecoder(Ort::Value targets,
std::vector<Ort::Value> states) const {
return impl_->RunDecoder(std::move(targets), std::move(states));
}
std::vector<Ort::Value> OnlineTransducerNeMoModel::GetDecoderInitStates()
const {
return impl_->GetDecoderInitStates();
}
Ort::Value OnlineTransducerNeMoModel::RunJoiner(Ort::Value encoder_out,
Ort::Value decoder_out) const {
return impl_->RunJoiner(std::move(encoder_out), std::move(decoder_out));
}
int32_t OnlineTransducerNeMoModel::ChunkSize() const {
return impl_->ChunkSize();
}
int32_t OnlineTransducerNeMoModel::ChunkShift() const {
return impl_->ChunkShift();
}
int32_t OnlineTransducerNeMoModel::SubsamplingFactor() const {
return impl_->SubsamplingFactor();
}
int32_t OnlineTransducerNeMoModel::VocabSize() const {
return impl_->VocabSize();
}
OrtAllocator *OnlineTransducerNeMoModel::Allocator() const {
return impl_->Allocator();
}
std::string OnlineTransducerNeMoModel::FeatureNormalizationMethod() const {
return impl_->FeatureNormalizationMethod();
}
std::vector<Ort::Value> OnlineTransducerNeMoModel::GetEncoderInitStates()
const {
return impl_->GetEncoderInitStates();
}
std::vector<Ort::Value> OnlineTransducerNeMoModel::StackStates(
std::vector<std::vector<Ort::Value>> states) const {
return impl_->StackStates(std::move(states));
}
std::vector<std::vector<Ort::Value>> OnlineTransducerNeMoModel::UnStackStates(
std::vector<Ort::Value> states) const {
return impl_->UnStackStates(std::move(states));
}
#if __ANDROID_API__ >= 9
template OnlineTransducerNeMoModel::OnlineTransducerNeMoModel(
AAssetManager *mgr, const OnlineModelConfig &config);
#endif
#if __OHOS__
template OnlineTransducerNeMoModel::OnlineTransducerNeMoModel(
NativeResourceManager *mgr, const OnlineModelConfig &config);
#endif
} // namespace sherpa_onnx