mirror of
https://github.com/k2-fsa/sherpa-onnx.git
synced 2026-01-09 07:41:06 +08:00
344 lines
9.9 KiB
C++
344 lines
9.9 KiB
C++
// sherpa-onnx/csrc/online-nemo-ctc-model.cc
|
|
//
|
|
// Copyright (c) 2023 Xiaomi Corporation
|
|
|
|
#include "sherpa-onnx/csrc/online-nemo-ctc-model.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <string>
|
|
|
|
#if __ANDROID_API__ >= 9
|
|
#include "android/asset_manager.h"
|
|
#include "android/asset_manager_jni.h"
|
|
#endif
|
|
|
|
#if __OHOS__
|
|
#include "rawfile/raw_file_manager.h"
|
|
#endif
|
|
|
|
#include "sherpa-onnx/csrc/cat.h"
|
|
#include "sherpa-onnx/csrc/file-utils.h"
|
|
#include "sherpa-onnx/csrc/macros.h"
|
|
#include "sherpa-onnx/csrc/onnx-utils.h"
|
|
#include "sherpa-onnx/csrc/session.h"
|
|
#include "sherpa-onnx/csrc/text-utils.h"
|
|
#include "sherpa-onnx/csrc/transpose.h"
|
|
#include "sherpa-onnx/csrc/unbind.h"
|
|
|
|
namespace sherpa_onnx {
|
|
|
|
class OnlineNeMoCtcModel::Impl {
|
|
public:
|
|
explicit Impl(const OnlineModelConfig &config)
|
|
: config_(config),
|
|
env_(ORT_LOGGING_LEVEL_ERROR),
|
|
sess_opts_(GetSessionOptions(config)),
|
|
allocator_{} {
|
|
{
|
|
auto buf = ReadFile(config.nemo_ctc.model);
|
|
Init(buf.data(), buf.size());
|
|
}
|
|
}
|
|
|
|
template <typename Manager>
|
|
Impl(Manager *mgr, const OnlineModelConfig &config)
|
|
: config_(config),
|
|
env_(ORT_LOGGING_LEVEL_ERROR),
|
|
sess_opts_(GetSessionOptions(config)),
|
|
allocator_{} {
|
|
{
|
|
auto buf = ReadFile(mgr, config.nemo_ctc.model);
|
|
Init(buf.data(), buf.size());
|
|
}
|
|
}
|
|
|
|
std::vector<Ort::Value> Forward(Ort::Value x,
|
|
std::vector<Ort::Value> states) {
|
|
Ort::Value &cache_last_channel = states[0];
|
|
Ort::Value &cache_last_time = states[1];
|
|
Ort::Value &cache_last_channel_len = states[2];
|
|
|
|
int32_t batch_size = x.GetTensorTypeAndShapeInfo().GetShape()[0];
|
|
|
|
std::array<int64_t, 1> length_shape{batch_size};
|
|
|
|
Ort::Value length = Ort::Value::CreateTensor<int64_t>(
|
|
allocator_, length_shape.data(), length_shape.size());
|
|
|
|
int64_t *p_length = length.GetTensorMutableData<int64_t>();
|
|
|
|
std::fill(p_length, p_length + batch_size, ChunkLength());
|
|
|
|
// (B, T, C) -> (B, C, T)
|
|
x = Transpose12(allocator_, &x);
|
|
|
|
std::array<Ort::Value, 5> inputs = {
|
|
std::move(x), View(&length), std::move(cache_last_channel),
|
|
std::move(cache_last_time), std::move(cache_last_channel_len)};
|
|
|
|
auto out =
|
|
sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
|
|
output_names_ptr_.data(), output_names_ptr_.size());
|
|
// out[0]: logit
|
|
// out[1] logit_length
|
|
// out[2:] states_next
|
|
//
|
|
// we need to remove out[1]
|
|
|
|
std::vector<Ort::Value> ans;
|
|
ans.reserve(out.size() - 1);
|
|
|
|
for (int32_t i = 0; i != out.size(); ++i) {
|
|
if (i == 1) {
|
|
continue;
|
|
}
|
|
|
|
ans.push_back(std::move(out[i]));
|
|
}
|
|
|
|
return ans;
|
|
}
|
|
|
|
int32_t VocabSize() const { return vocab_size_; }
|
|
|
|
int32_t ChunkLength() const { return window_size_; }
|
|
|
|
int32_t ChunkShift() const { return chunk_shift_; }
|
|
|
|
OrtAllocator *Allocator() { return allocator_; }
|
|
|
|
// Return a vector containing 3 tensors
|
|
// - cache_last_channel
|
|
// - cache_last_time_
|
|
// - cache_last_channel_len
|
|
std::vector<Ort::Value> GetInitStates() {
|
|
std::vector<Ort::Value> ans;
|
|
ans.reserve(3);
|
|
ans.push_back(View(&cache_last_channel_));
|
|
ans.push_back(View(&cache_last_time_));
|
|
ans.push_back(View(&cache_last_channel_len_));
|
|
|
|
return ans;
|
|
}
|
|
|
|
std::vector<Ort::Value> StackStates(
|
|
std::vector<std::vector<Ort::Value>> states) {
|
|
int32_t batch_size = static_cast<int32_t>(states.size());
|
|
if (batch_size == 1) {
|
|
return std::move(states[0]);
|
|
}
|
|
|
|
std::vector<Ort::Value> ans;
|
|
|
|
// stack cache_last_channel
|
|
std::vector<const Ort::Value *> buf(batch_size);
|
|
|
|
// there are 3 states to be stacked
|
|
for (int32_t i = 0; i != 3; ++i) {
|
|
buf.clear();
|
|
buf.reserve(batch_size);
|
|
|
|
for (int32_t b = 0; b != batch_size; ++b) {
|
|
assert(states[b].size() == 3);
|
|
buf.push_back(&states[b][i]);
|
|
}
|
|
|
|
Ort::Value c{nullptr};
|
|
if (i == 2) {
|
|
c = Cat<int64_t>(allocator_, buf, 0);
|
|
} else {
|
|
c = Cat(allocator_, buf, 0);
|
|
}
|
|
|
|
ans.push_back(std::move(c));
|
|
}
|
|
|
|
return ans;
|
|
}
|
|
|
|
std::vector<std::vector<Ort::Value>> UnStackStates(
|
|
std::vector<Ort::Value> states) const {
|
|
assert(states.size() == 3);
|
|
|
|
auto allocator = const_cast<Impl *>(this)->allocator_;
|
|
|
|
std::vector<std::vector<Ort::Value>> ans;
|
|
|
|
auto shape = states[0].GetTensorTypeAndShapeInfo().GetShape();
|
|
int32_t batch_size = shape[0];
|
|
ans.resize(batch_size);
|
|
|
|
if (batch_size == 1) {
|
|
ans[0] = std::move(states);
|
|
return ans;
|
|
}
|
|
|
|
for (int32_t i = 0; i != 3; ++i) {
|
|
std::vector<Ort::Value> v;
|
|
if (i == 2) {
|
|
v = Unbind<int64_t>(allocator, &states[i], 0);
|
|
} else {
|
|
v = Unbind(allocator, &states[i], 0);
|
|
}
|
|
|
|
assert(v.size() == batch_size);
|
|
|
|
for (int32_t b = 0; b != batch_size; ++b) {
|
|
ans[b].push_back(std::move(v[b]));
|
|
}
|
|
}
|
|
|
|
return ans;
|
|
}
|
|
|
|
private:
|
|
void Init(void *model_data, size_t model_data_length) {
|
|
sess_ = std::make_unique<Ort::Session>(env_, model_data, model_data_length,
|
|
sess_opts_);
|
|
|
|
GetInputNames(sess_.get(), &input_names_, &input_names_ptr_);
|
|
|
|
GetOutputNames(sess_.get(), &output_names_, &output_names_ptr_);
|
|
|
|
// get meta data
|
|
Ort::ModelMetadata meta_data = sess_->GetModelMetadata();
|
|
if (config_.debug) {
|
|
std::ostringstream os;
|
|
PrintModelMetadata(os, meta_data);
|
|
#if __OHOS__
|
|
SHERPA_ONNX_LOGE("%{public}s", os.str().c_str());
|
|
#else
|
|
SHERPA_ONNX_LOGE("%s", os.str().c_str());
|
|
#endif
|
|
}
|
|
|
|
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
|
|
SHERPA_ONNX_READ_META_DATA(window_size_, "window_size");
|
|
SHERPA_ONNX_READ_META_DATA(chunk_shift_, "chunk_shift");
|
|
SHERPA_ONNX_READ_META_DATA(subsampling_factor_, "subsampling_factor");
|
|
SHERPA_ONNX_READ_META_DATA(vocab_size_, "vocab_size");
|
|
SHERPA_ONNX_READ_META_DATA(cache_last_channel_dim1_,
|
|
"cache_last_channel_dim1");
|
|
SHERPA_ONNX_READ_META_DATA(cache_last_channel_dim2_,
|
|
"cache_last_channel_dim2");
|
|
SHERPA_ONNX_READ_META_DATA(cache_last_channel_dim3_,
|
|
"cache_last_channel_dim3");
|
|
SHERPA_ONNX_READ_META_DATA(cache_last_time_dim1_, "cache_last_time_dim1");
|
|
SHERPA_ONNX_READ_META_DATA(cache_last_time_dim2_, "cache_last_time_dim2");
|
|
SHERPA_ONNX_READ_META_DATA(cache_last_time_dim3_, "cache_last_time_dim3");
|
|
|
|
// need to increase by 1 since the blank token is not included in computing
|
|
// vocab_size in NeMo.
|
|
vocab_size_ += 1;
|
|
|
|
InitStates();
|
|
}
|
|
|
|
void InitStates() {
|
|
std::array<int64_t, 4> cache_last_channel_shape{1, cache_last_channel_dim1_,
|
|
cache_last_channel_dim2_,
|
|
cache_last_channel_dim3_};
|
|
|
|
cache_last_channel_ = Ort::Value::CreateTensor<float>(
|
|
allocator_, cache_last_channel_shape.data(),
|
|
cache_last_channel_shape.size());
|
|
|
|
Fill<float>(&cache_last_channel_, 0);
|
|
|
|
std::array<int64_t, 4> cache_last_time_shape{
|
|
1, cache_last_time_dim1_, cache_last_time_dim2_, cache_last_time_dim3_};
|
|
|
|
cache_last_time_ = Ort::Value::CreateTensor<float>(
|
|
allocator_, cache_last_time_shape.data(), cache_last_time_shape.size());
|
|
|
|
Fill<float>(&cache_last_time_, 0);
|
|
|
|
int64_t shape = 1;
|
|
cache_last_channel_len_ =
|
|
Ort::Value::CreateTensor<int64_t>(allocator_, &shape, 1);
|
|
|
|
cache_last_channel_len_.GetTensorMutableData<int64_t>()[0] = 0;
|
|
}
|
|
|
|
private:
|
|
OnlineModelConfig config_;
|
|
Ort::Env env_;
|
|
Ort::SessionOptions sess_opts_;
|
|
Ort::AllocatorWithDefaultOptions allocator_;
|
|
|
|
std::unique_ptr<Ort::Session> sess_;
|
|
|
|
std::vector<std::string> input_names_;
|
|
std::vector<const char *> input_names_ptr_;
|
|
|
|
std::vector<std::string> output_names_;
|
|
std::vector<const char *> output_names_ptr_;
|
|
|
|
int32_t window_size_ = 0;
|
|
int32_t chunk_shift_ = 0;
|
|
int32_t subsampling_factor_ = 0;
|
|
int32_t vocab_size_ = 0;
|
|
int32_t cache_last_channel_dim1_ = 0;
|
|
int32_t cache_last_channel_dim2_ = 0;
|
|
int32_t cache_last_channel_dim3_ = 0;
|
|
int32_t cache_last_time_dim1_ = 0;
|
|
int32_t cache_last_time_dim2_ = 0;
|
|
int32_t cache_last_time_dim3_ = 0;
|
|
|
|
Ort::Value cache_last_channel_{nullptr};
|
|
Ort::Value cache_last_time_{nullptr};
|
|
Ort::Value cache_last_channel_len_{nullptr};
|
|
};
|
|
|
|
OnlineNeMoCtcModel::OnlineNeMoCtcModel(const OnlineModelConfig &config)
|
|
: impl_(std::make_unique<Impl>(config)) {}
|
|
|
|
template <typename Manager>
|
|
OnlineNeMoCtcModel::OnlineNeMoCtcModel(Manager *mgr,
|
|
const OnlineModelConfig &config)
|
|
: impl_(std::make_unique<Impl>(mgr, config)) {}
|
|
|
|
OnlineNeMoCtcModel::~OnlineNeMoCtcModel() = default;
|
|
|
|
std::vector<Ort::Value> OnlineNeMoCtcModel::Forward(
|
|
Ort::Value x, std::vector<Ort::Value> states) const {
|
|
return impl_->Forward(std::move(x), std::move(states));
|
|
}
|
|
|
|
int32_t OnlineNeMoCtcModel::VocabSize() const { return impl_->VocabSize(); }
|
|
|
|
int32_t OnlineNeMoCtcModel::ChunkLength() const { return impl_->ChunkLength(); }
|
|
|
|
int32_t OnlineNeMoCtcModel::ChunkShift() const { return impl_->ChunkShift(); }
|
|
|
|
OrtAllocator *OnlineNeMoCtcModel::Allocator() const {
|
|
return impl_->Allocator();
|
|
}
|
|
|
|
std::vector<Ort::Value> OnlineNeMoCtcModel::GetInitStates() const {
|
|
return impl_->GetInitStates();
|
|
}
|
|
|
|
std::vector<Ort::Value> OnlineNeMoCtcModel::StackStates(
|
|
std::vector<std::vector<Ort::Value>> states) const {
|
|
return impl_->StackStates(std::move(states));
|
|
}
|
|
|
|
std::vector<std::vector<Ort::Value>> OnlineNeMoCtcModel::UnStackStates(
|
|
std::vector<Ort::Value> states) const {
|
|
return impl_->UnStackStates(std::move(states));
|
|
}
|
|
|
|
#if __ANDROID_API__ >= 9
|
|
template OnlineNeMoCtcModel::OnlineNeMoCtcModel(
|
|
AAssetManager *mgr, const OnlineModelConfig &config);
|
|
#endif
|
|
|
|
#if __OHOS__
|
|
template OnlineNeMoCtcModel::OnlineNeMoCtcModel(
|
|
NativeResourceManager *mgr, const OnlineModelConfig &config);
|
|
#endif
|
|
|
|
} // namespace sherpa_onnx
|