mirror of
https://github.com/k2-fsa/sherpa-onnx.git
synced 2026-01-09 07:41:06 +08:00
299 lines
9.6 KiB
C++
299 lines
9.6 KiB
C++
// sherpa-onnx/csrc/online-conformer-transducer-model.cc
|
|
//
|
|
// Copyright (c) 2023 Jingzhao Ou (jingzhao.ou@gmail.com)
|
|
|
|
#include "sherpa-onnx/csrc/online-conformer-transducer-model.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#if __ANDROID_API__ >= 9
|
|
#include "android/asset_manager.h"
|
|
#include "android/asset_manager_jni.h"
|
|
#endif
|
|
|
|
#if __OHOS__
|
|
#include "rawfile/raw_file_manager.h"
|
|
#endif
|
|
|
|
#include "onnxruntime_cxx_api.h" // NOLINT
|
|
#include "sherpa-onnx/csrc/cat.h"
|
|
#include "sherpa-onnx/csrc/file-utils.h"
|
|
#include "sherpa-onnx/csrc/macros.h"
|
|
#include "sherpa-onnx/csrc/online-transducer-decoder.h"
|
|
#include "sherpa-onnx/csrc/onnx-utils.h"
|
|
#include "sherpa-onnx/csrc/session.h"
|
|
#include "sherpa-onnx/csrc/text-utils.h"
|
|
#include "sherpa-onnx/csrc/unbind.h"
|
|
|
|
namespace sherpa_onnx {
|
|
|
|
OnlineConformerTransducerModel::OnlineConformerTransducerModel(
|
|
const OnlineModelConfig &config)
|
|
: env_(ORT_LOGGING_LEVEL_ERROR),
|
|
config_(config),
|
|
sess_opts_(GetSessionOptions(config)),
|
|
allocator_{} {
|
|
{
|
|
auto buf = ReadFile(config.transducer.encoder);
|
|
InitEncoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(config.transducer.decoder);
|
|
InitDecoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(config.transducer.joiner);
|
|
InitJoiner(buf.data(), buf.size());
|
|
}
|
|
}
|
|
|
|
template <typename Manager>
|
|
OnlineConformerTransducerModel::OnlineConformerTransducerModel(
|
|
Manager *mgr, const OnlineModelConfig &config)
|
|
: env_(ORT_LOGGING_LEVEL_ERROR),
|
|
config_(config),
|
|
sess_opts_(GetSessionOptions(config)),
|
|
allocator_{} {
|
|
{
|
|
auto buf = ReadFile(mgr, config.transducer.encoder);
|
|
InitEncoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(mgr, config.transducer.decoder);
|
|
InitDecoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(mgr, config.transducer.joiner);
|
|
InitJoiner(buf.data(), buf.size());
|
|
}
|
|
}
|
|
|
|
void OnlineConformerTransducerModel::InitEncoder(void *model_data,
|
|
size_t model_data_length) {
|
|
encoder_sess_ = std::make_unique<Ort::Session>(env_, model_data,
|
|
model_data_length, sess_opts_);
|
|
|
|
GetInputNames(encoder_sess_.get(), &encoder_input_names_,
|
|
&encoder_input_names_ptr_);
|
|
|
|
GetOutputNames(encoder_sess_.get(), &encoder_output_names_,
|
|
&encoder_output_names_ptr_);
|
|
|
|
// get meta data
|
|
Ort::ModelMetadata meta_data = encoder_sess_->GetModelMetadata();
|
|
if (config_.debug) {
|
|
std::ostringstream os;
|
|
os << "---encoder---\n";
|
|
PrintModelMetadata(os, meta_data);
|
|
#if __OHOS__
|
|
SHERPA_ONNX_LOGE("%{public}s", os.str().c_str());
|
|
#else
|
|
SHERPA_ONNX_LOGE("%s", os.str().c_str());
|
|
#endif
|
|
}
|
|
|
|
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
|
|
SHERPA_ONNX_READ_META_DATA(num_encoder_layers_, "num_encoder_layers");
|
|
SHERPA_ONNX_READ_META_DATA(T_, "T");
|
|
SHERPA_ONNX_READ_META_DATA(decode_chunk_len_, "decode_chunk_len");
|
|
SHERPA_ONNX_READ_META_DATA(left_context_, "left_context");
|
|
SHERPA_ONNX_READ_META_DATA(encoder_dim_, "encoder_dim");
|
|
SHERPA_ONNX_READ_META_DATA(pad_length_, "pad_length");
|
|
SHERPA_ONNX_READ_META_DATA(cnn_module_kernel_, "cnn_module_kernel");
|
|
}
|
|
|
|
void OnlineConformerTransducerModel::InitDecoder(void *model_data,
|
|
size_t model_data_length) {
|
|
decoder_sess_ = std::make_unique<Ort::Session>(env_, model_data,
|
|
model_data_length, sess_opts_);
|
|
|
|
GetInputNames(decoder_sess_.get(), &decoder_input_names_,
|
|
&decoder_input_names_ptr_);
|
|
|
|
GetOutputNames(decoder_sess_.get(), &decoder_output_names_,
|
|
&decoder_output_names_ptr_);
|
|
|
|
// get meta data
|
|
Ort::ModelMetadata meta_data = decoder_sess_->GetModelMetadata();
|
|
if (config_.debug) {
|
|
std::ostringstream os;
|
|
os << "---decoder---\n";
|
|
PrintModelMetadata(os, meta_data);
|
|
#if __OHOS__
|
|
SHERPA_ONNX_LOGE("%{public}s", os.str().c_str());
|
|
#else
|
|
SHERPA_ONNX_LOGE("%s", os.str().c_str());
|
|
#endif
|
|
}
|
|
|
|
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
|
|
SHERPA_ONNX_READ_META_DATA(vocab_size_, "vocab_size");
|
|
SHERPA_ONNX_READ_META_DATA(context_size_, "context_size");
|
|
}
|
|
|
|
void OnlineConformerTransducerModel::InitJoiner(void *model_data,
|
|
size_t model_data_length) {
|
|
joiner_sess_ = std::make_unique<Ort::Session>(env_, model_data,
|
|
model_data_length, sess_opts_);
|
|
|
|
GetInputNames(joiner_sess_.get(), &joiner_input_names_,
|
|
&joiner_input_names_ptr_);
|
|
|
|
GetOutputNames(joiner_sess_.get(), &joiner_output_names_,
|
|
&joiner_output_names_ptr_);
|
|
|
|
// get meta data
|
|
Ort::ModelMetadata meta_data = joiner_sess_->GetModelMetadata();
|
|
if (config_.debug) {
|
|
std::ostringstream os;
|
|
os << "---joiner---\n";
|
|
PrintModelMetadata(os, meta_data);
|
|
SHERPA_ONNX_LOGE("%s", os.str().c_str());
|
|
}
|
|
}
|
|
|
|
std::vector<Ort::Value> OnlineConformerTransducerModel::StackStates(
|
|
const std::vector<std::vector<Ort::Value>> &states) const {
|
|
int32_t batch_size = static_cast<int32_t>(states.size());
|
|
|
|
std::vector<const Ort::Value *> attn_vec(batch_size);
|
|
std::vector<const Ort::Value *> conv_vec(batch_size);
|
|
|
|
for (int32_t i = 0; i != batch_size; ++i) {
|
|
assert(states[i].size() == 2);
|
|
attn_vec[i] = &states[i][0];
|
|
conv_vec[i] = &states[i][1];
|
|
}
|
|
|
|
auto allocator =
|
|
const_cast<OnlineConformerTransducerModel *>(this)->allocator_;
|
|
|
|
Ort::Value attn = Cat(allocator, attn_vec, 2);
|
|
Ort::Value conv = Cat(allocator, conv_vec, 2);
|
|
|
|
std::vector<Ort::Value> ans;
|
|
ans.reserve(2);
|
|
ans.push_back(std::move(attn));
|
|
ans.push_back(std::move(conv));
|
|
|
|
return ans;
|
|
}
|
|
|
|
std::vector<std::vector<Ort::Value>>
|
|
OnlineConformerTransducerModel::UnStackStates(
|
|
const std::vector<Ort::Value> &states) const {
|
|
const int32_t batch_size =
|
|
states[0].GetTensorTypeAndShapeInfo().GetShape()[2];
|
|
assert(states.size() == 2);
|
|
|
|
std::vector<std::vector<Ort::Value>> ans(batch_size);
|
|
|
|
auto allocator =
|
|
const_cast<OnlineConformerTransducerModel *>(this)->allocator_;
|
|
|
|
std::vector<Ort::Value> attn_vec = Unbind(allocator, &states[0], 2);
|
|
std::vector<Ort::Value> conv_vec = Unbind(allocator, &states[1], 2);
|
|
|
|
assert(attn_vec.size() == batch_size);
|
|
assert(conv_vec.size() == batch_size);
|
|
|
|
for (int32_t i = 0; i != batch_size; ++i) {
|
|
ans[i].push_back(std::move(attn_vec[i]));
|
|
ans[i].push_back(std::move(conv_vec[i]));
|
|
}
|
|
|
|
return ans;
|
|
}
|
|
|
|
std::vector<Ort::Value> OnlineConformerTransducerModel::GetEncoderInitStates() {
|
|
// Please see
|
|
// https://github.com/k2-fsa/icefall/blob/86b0db6eb9c84d9bc90a71d92774fe2a7f73e6ab/egs/librispeech/ASR/pruned_transducer_stateless5/conformer.py#L203
|
|
// for details
|
|
constexpr int32_t kBatchSize = 1;
|
|
std::array<int64_t, 4> h_shape{num_encoder_layers_, left_context_, kBatchSize,
|
|
encoder_dim_};
|
|
Ort::Value h = Ort::Value::CreateTensor<float>(allocator_, h_shape.data(),
|
|
h_shape.size());
|
|
|
|
Fill<float>(&h, 0);
|
|
|
|
std::array<int64_t, 4> c_shape{num_encoder_layers_, cnn_module_kernel_ - 1,
|
|
kBatchSize, encoder_dim_};
|
|
|
|
Ort::Value c = Ort::Value::CreateTensor<float>(allocator_, c_shape.data(),
|
|
c_shape.size());
|
|
|
|
Fill<float>(&c, 0);
|
|
|
|
std::vector<Ort::Value> states;
|
|
|
|
states.reserve(2);
|
|
states.push_back(std::move(h));
|
|
states.push_back(std::move(c));
|
|
|
|
return states;
|
|
}
|
|
|
|
std::pair<Ort::Value, std::vector<Ort::Value>>
|
|
OnlineConformerTransducerModel::RunEncoder(Ort::Value features,
|
|
std::vector<Ort::Value> states,
|
|
Ort::Value processed_frames) {
|
|
std::array<Ort::Value, 4> encoder_inputs = {
|
|
std::move(features), std::move(states[0]), std::move(states[1]),
|
|
std::move(processed_frames)};
|
|
|
|
auto encoder_out = encoder_sess_->Run(
|
|
{}, encoder_input_names_ptr_.data(), encoder_inputs.data(),
|
|
encoder_inputs.size(), encoder_output_names_ptr_.data(),
|
|
encoder_output_names_ptr_.size());
|
|
|
|
std::vector<Ort::Value> next_states;
|
|
next_states.reserve(2);
|
|
next_states.push_back(std::move(encoder_out[1]));
|
|
next_states.push_back(std::move(encoder_out[2]));
|
|
|
|
return {std::move(encoder_out[0]), std::move(next_states)};
|
|
}
|
|
|
|
Ort::Value OnlineConformerTransducerModel::RunDecoder(
|
|
Ort::Value decoder_input) {
|
|
auto decoder_out = decoder_sess_->Run(
|
|
{}, decoder_input_names_ptr_.data(), &decoder_input, 1,
|
|
decoder_output_names_ptr_.data(), decoder_output_names_ptr_.size());
|
|
return std::move(decoder_out[0]);
|
|
}
|
|
|
|
Ort::Value OnlineConformerTransducerModel::RunJoiner(Ort::Value encoder_out,
|
|
Ort::Value decoder_out) {
|
|
std::array<Ort::Value, 2> joiner_input = {std::move(encoder_out),
|
|
std::move(decoder_out)};
|
|
auto logit =
|
|
joiner_sess_->Run({}, joiner_input_names_ptr_.data(), joiner_input.data(),
|
|
joiner_input.size(), joiner_output_names_ptr_.data(),
|
|
joiner_output_names_ptr_.size());
|
|
|
|
return std::move(logit[0]);
|
|
}
|
|
|
|
#if __ANDROID_API__ >= 9
|
|
template OnlineConformerTransducerModel::OnlineConformerTransducerModel(
|
|
AAssetManager *mgr, const OnlineModelConfig &config);
|
|
#endif
|
|
|
|
#if __OHOS__
|
|
template OnlineConformerTransducerModel::OnlineConformerTransducerModel(
|
|
NativeResourceManager *mgr, const OnlineModelConfig &config);
|
|
#endif
|
|
|
|
} // namespace sherpa_onnx
|