mirror of
https://github.com/k2-fsa/sherpa-onnx.git
synced 2026-01-09 07:41:06 +08:00
317 lines
10 KiB
C++
317 lines
10 KiB
C++
// sherpa-onnx/csrc/offline-transducer-model.cc
|
|
//
|
|
// Copyright (c) 2023 Xiaomi Corporation
|
|
|
|
#include "sherpa-onnx/csrc/offline-transducer-model.h"
|
|
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#if __ANDROID_API__ >= 9
|
|
#include "android/asset_manager.h"
|
|
#include "android/asset_manager_jni.h"
|
|
#endif
|
|
|
|
#if __OHOS__
|
|
#include "rawfile/raw_file_manager.h"
|
|
#endif
|
|
|
|
#include "sherpa-onnx/csrc/file-utils.h"
|
|
#include "sherpa-onnx/csrc/macros.h"
|
|
#include "sherpa-onnx/csrc/offline-transducer-decoder.h"
|
|
#include "sherpa-onnx/csrc/onnx-utils.h"
|
|
#include "sherpa-onnx/csrc/session.h"
|
|
|
|
namespace sherpa_onnx {
|
|
|
|
class OfflineTransducerModel::Impl {
|
|
public:
|
|
explicit Impl(const OfflineModelConfig &config)
|
|
: config_(config),
|
|
env_(ORT_LOGGING_LEVEL_ERROR),
|
|
sess_opts_(GetSessionOptions(config)),
|
|
allocator_{} {
|
|
{
|
|
auto buf = ReadFile(config.transducer.encoder_filename);
|
|
InitEncoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(config.transducer.decoder_filename);
|
|
InitDecoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(config.transducer.joiner_filename);
|
|
InitJoiner(buf.data(), buf.size());
|
|
}
|
|
}
|
|
|
|
template <typename Manager>
|
|
Impl(Manager *mgr, const OfflineModelConfig &config)
|
|
: config_(config),
|
|
env_(ORT_LOGGING_LEVEL_ERROR),
|
|
sess_opts_(GetSessionOptions(config)),
|
|
allocator_{} {
|
|
{
|
|
auto buf = ReadFile(mgr, config.transducer.encoder_filename);
|
|
InitEncoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(mgr, config.transducer.decoder_filename);
|
|
InitDecoder(buf.data(), buf.size());
|
|
}
|
|
|
|
{
|
|
auto buf = ReadFile(mgr, config.transducer.joiner_filename);
|
|
InitJoiner(buf.data(), buf.size());
|
|
}
|
|
}
|
|
|
|
std::pair<Ort::Value, Ort::Value> RunEncoder(Ort::Value features,
|
|
Ort::Value features_length) {
|
|
std::array<Ort::Value, 2> encoder_inputs = {std::move(features),
|
|
std::move(features_length)};
|
|
|
|
auto encoder_out = encoder_sess_->Run(
|
|
{}, encoder_input_names_ptr_.data(), encoder_inputs.data(),
|
|
encoder_inputs.size(), encoder_output_names_ptr_.data(),
|
|
encoder_output_names_ptr_.size());
|
|
|
|
return {std::move(encoder_out[0]), std::move(encoder_out[1])};
|
|
}
|
|
|
|
Ort::Value RunDecoder(Ort::Value decoder_input) {
|
|
auto decoder_out = decoder_sess_->Run(
|
|
{}, decoder_input_names_ptr_.data(), &decoder_input, 1,
|
|
decoder_output_names_ptr_.data(), decoder_output_names_ptr_.size());
|
|
return std::move(decoder_out[0]);
|
|
}
|
|
|
|
Ort::Value RunJoiner(Ort::Value encoder_out, Ort::Value decoder_out) {
|
|
std::array<Ort::Value, 2> joiner_input = {std::move(encoder_out),
|
|
std::move(decoder_out)};
|
|
auto logit = joiner_sess_->Run({}, joiner_input_names_ptr_.data(),
|
|
joiner_input.data(), joiner_input.size(),
|
|
joiner_output_names_ptr_.data(),
|
|
joiner_output_names_ptr_.size());
|
|
|
|
return std::move(logit[0]);
|
|
}
|
|
|
|
int32_t VocabSize() const { return vocab_size_; }
|
|
int32_t ContextSize() const { return context_size_; }
|
|
int32_t SubsamplingFactor() const { return 4; }
|
|
OrtAllocator *Allocator() { return allocator_; }
|
|
|
|
Ort::Value BuildDecoderInput(
|
|
const std::vector<OfflineTransducerDecoderResult> &results,
|
|
int32_t end_index) {
|
|
assert(end_index <= results.size());
|
|
|
|
int32_t batch_size = end_index;
|
|
int32_t context_size = ContextSize();
|
|
std::array<int64_t, 2> shape{batch_size, context_size};
|
|
|
|
Ort::Value decoder_input = Ort::Value::CreateTensor<int64_t>(
|
|
Allocator(), shape.data(), shape.size());
|
|
int64_t *p = decoder_input.GetTensorMutableData<int64_t>();
|
|
|
|
for (int32_t i = 0; i != batch_size; ++i) {
|
|
const auto &r = results[i];
|
|
const int64_t *begin = r.tokens.data() + r.tokens.size() - context_size;
|
|
const int64_t *end = r.tokens.data() + r.tokens.size();
|
|
std::copy(begin, end, p);
|
|
p += context_size;
|
|
}
|
|
|
|
return decoder_input;
|
|
}
|
|
|
|
Ort::Value BuildDecoderInput(const std::vector<Hypothesis> &results,
|
|
int32_t end_index) {
|
|
assert(end_index <= results.size());
|
|
|
|
int32_t batch_size = end_index;
|
|
int32_t context_size = ContextSize();
|
|
std::array<int64_t, 2> shape{batch_size, context_size};
|
|
|
|
Ort::Value decoder_input = Ort::Value::CreateTensor<int64_t>(
|
|
Allocator(), shape.data(), shape.size());
|
|
int64_t *p = decoder_input.GetTensorMutableData<int64_t>();
|
|
|
|
for (int32_t i = 0; i != batch_size; ++i) {
|
|
const auto &r = results[i];
|
|
const int64_t *begin = r.ys.data() + r.ys.size() - context_size;
|
|
const int64_t *end = r.ys.data() + r.ys.size();
|
|
std::copy(begin, end, p);
|
|
p += context_size;
|
|
}
|
|
|
|
return decoder_input;
|
|
}
|
|
|
|
private:
|
|
void InitEncoder(void *model_data, size_t model_data_length) {
|
|
encoder_sess_ = std::make_unique<Ort::Session>(
|
|
env_, model_data, model_data_length, sess_opts_);
|
|
|
|
GetInputNames(encoder_sess_.get(), &encoder_input_names_,
|
|
&encoder_input_names_ptr_);
|
|
|
|
GetOutputNames(encoder_sess_.get(), &encoder_output_names_,
|
|
&encoder_output_names_ptr_);
|
|
|
|
// get meta data
|
|
Ort::ModelMetadata meta_data = encoder_sess_->GetModelMetadata();
|
|
if (config_.debug) {
|
|
std::ostringstream os;
|
|
os << "---encoder---\n";
|
|
PrintModelMetadata(os, meta_data);
|
|
#if __OHOS__
|
|
SHERPA_ONNX_LOGE("%{public}s\n", os.str().c_str());
|
|
#else
|
|
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void InitDecoder(void *model_data, size_t model_data_length) {
|
|
decoder_sess_ = std::make_unique<Ort::Session>(
|
|
env_, model_data, model_data_length, sess_opts_);
|
|
|
|
GetInputNames(decoder_sess_.get(), &decoder_input_names_,
|
|
&decoder_input_names_ptr_);
|
|
|
|
GetOutputNames(decoder_sess_.get(), &decoder_output_names_,
|
|
&decoder_output_names_ptr_);
|
|
|
|
// get meta data
|
|
Ort::ModelMetadata meta_data = decoder_sess_->GetModelMetadata();
|
|
if (config_.debug) {
|
|
std::ostringstream os;
|
|
os << "---decoder---\n";
|
|
PrintModelMetadata(os, meta_data);
|
|
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
|
|
}
|
|
|
|
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
|
|
SHERPA_ONNX_READ_META_DATA(vocab_size_, "vocab_size");
|
|
SHERPA_ONNX_READ_META_DATA(context_size_, "context_size");
|
|
}
|
|
|
|
void InitJoiner(void *model_data, size_t model_data_length) {
|
|
joiner_sess_ = std::make_unique<Ort::Session>(
|
|
env_, model_data, model_data_length, sess_opts_);
|
|
|
|
GetInputNames(joiner_sess_.get(), &joiner_input_names_,
|
|
&joiner_input_names_ptr_);
|
|
|
|
GetOutputNames(joiner_sess_.get(), &joiner_output_names_,
|
|
&joiner_output_names_ptr_);
|
|
|
|
// get meta data
|
|
Ort::ModelMetadata meta_data = joiner_sess_->GetModelMetadata();
|
|
if (config_.debug) {
|
|
std::ostringstream os;
|
|
os << "---joiner---\n";
|
|
PrintModelMetadata(os, meta_data);
|
|
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
|
|
}
|
|
}
|
|
|
|
private:
|
|
OfflineModelConfig config_;
|
|
Ort::Env env_;
|
|
Ort::SessionOptions sess_opts_;
|
|
Ort::AllocatorWithDefaultOptions allocator_;
|
|
|
|
std::unique_ptr<Ort::Session> encoder_sess_;
|
|
std::unique_ptr<Ort::Session> decoder_sess_;
|
|
std::unique_ptr<Ort::Session> joiner_sess_;
|
|
|
|
std::vector<std::string> encoder_input_names_;
|
|
std::vector<const char *> encoder_input_names_ptr_;
|
|
|
|
std::vector<std::string> encoder_output_names_;
|
|
std::vector<const char *> encoder_output_names_ptr_;
|
|
|
|
std::vector<std::string> decoder_input_names_;
|
|
std::vector<const char *> decoder_input_names_ptr_;
|
|
|
|
std::vector<std::string> decoder_output_names_;
|
|
std::vector<const char *> decoder_output_names_ptr_;
|
|
|
|
std::vector<std::string> joiner_input_names_;
|
|
std::vector<const char *> joiner_input_names_ptr_;
|
|
|
|
std::vector<std::string> joiner_output_names_;
|
|
std::vector<const char *> joiner_output_names_ptr_;
|
|
|
|
int32_t vocab_size_ = 0; // initialized in InitDecoder
|
|
int32_t context_size_ = 0; // initialized in InitDecoder
|
|
};
|
|
|
|
OfflineTransducerModel::OfflineTransducerModel(const OfflineModelConfig &config)
|
|
: impl_(std::make_unique<Impl>(config)) {}
|
|
|
|
template <typename Manager>
|
|
OfflineTransducerModel::OfflineTransducerModel(Manager *mgr,
|
|
const OfflineModelConfig &config)
|
|
: impl_(std::make_unique<Impl>(mgr, config)) {}
|
|
|
|
OfflineTransducerModel::~OfflineTransducerModel() = default;
|
|
|
|
std::pair<Ort::Value, Ort::Value> OfflineTransducerModel::RunEncoder(
|
|
Ort::Value features, Ort::Value features_length) {
|
|
return impl_->RunEncoder(std::move(features), std::move(features_length));
|
|
}
|
|
|
|
Ort::Value OfflineTransducerModel::RunDecoder(Ort::Value decoder_input) {
|
|
return impl_->RunDecoder(std::move(decoder_input));
|
|
}
|
|
|
|
Ort::Value OfflineTransducerModel::RunJoiner(Ort::Value encoder_out,
|
|
Ort::Value decoder_out) {
|
|
return impl_->RunJoiner(std::move(encoder_out), std::move(decoder_out));
|
|
}
|
|
|
|
int32_t OfflineTransducerModel::VocabSize() const { return impl_->VocabSize(); }
|
|
|
|
int32_t OfflineTransducerModel::ContextSize() const {
|
|
return impl_->ContextSize();
|
|
}
|
|
|
|
int32_t OfflineTransducerModel::SubsamplingFactor() const {
|
|
return impl_->SubsamplingFactor();
|
|
}
|
|
|
|
OrtAllocator *OfflineTransducerModel::Allocator() const {
|
|
return impl_->Allocator();
|
|
}
|
|
|
|
Ort::Value OfflineTransducerModel::BuildDecoderInput(
|
|
const std::vector<OfflineTransducerDecoderResult> &results,
|
|
int32_t end_index) const {
|
|
return impl_->BuildDecoderInput(results, end_index);
|
|
}
|
|
|
|
Ort::Value OfflineTransducerModel::BuildDecoderInput(
|
|
const std::vector<Hypothesis> &results, int32_t end_index) const {
|
|
return impl_->BuildDecoderInput(results, end_index);
|
|
}
|
|
|
|
#if __ANDROID_API__ >= 9
|
|
template OfflineTransducerModel::OfflineTransducerModel(
|
|
AAssetManager *mgr, const OfflineModelConfig &config);
|
|
#endif
|
|
|
|
#if __OHOS__
|
|
template OfflineTransducerModel::OfflineTransducerModel(
|
|
NativeResourceManager *mgr, const OfflineModelConfig &config);
|
|
#endif
|
|
|
|
} // namespace sherpa_onnx
|