mirror of
https://github.com/k2-fsa/sherpa-onnx.git
synced 2026-01-09 07:41:06 +08:00
182 lines
5.6 KiB
C++
182 lines
5.6 KiB
C++
// sherpa-onnx/csrc/offline-nemo-enc-dec-ctc-model.cc
|
|
//
|
|
// Copyright (c) 2023-2024 Xiaomi Corporation
|
|
|
|
#include "sherpa-onnx/csrc/offline-nemo-enc-dec-ctc-model.h"
|
|
|
|
#if __ANDROID_API__ >= 9
|
|
#include "android/asset_manager.h"
|
|
#include "android/asset_manager_jni.h"
|
|
#endif
|
|
|
|
#if __OHOS__
|
|
#include "rawfile/raw_file_manager.h"
|
|
#endif
|
|
|
|
#include "sherpa-onnx/csrc/file-utils.h"
|
|
#include "sherpa-onnx/csrc/macros.h"
|
|
#include "sherpa-onnx/csrc/onnx-utils.h"
|
|
#include "sherpa-onnx/csrc/session.h"
|
|
#include "sherpa-onnx/csrc/text-utils.h"
|
|
#include "sherpa-onnx/csrc/transpose.h"
|
|
|
|
namespace sherpa_onnx {
|
|
|
|
class OfflineNemoEncDecCtcModel::Impl {
|
|
public:
|
|
explicit Impl(const OfflineModelConfig &config)
|
|
: config_(config),
|
|
env_(ORT_LOGGING_LEVEL_ERROR),
|
|
sess_opts_(GetSessionOptions(config)),
|
|
allocator_{} {
|
|
auto buf = ReadFile(config_.nemo_ctc.model);
|
|
Init(buf.data(), buf.size());
|
|
}
|
|
|
|
template <typename Manager>
|
|
Impl(Manager *mgr, const OfflineModelConfig &config)
|
|
: config_(config),
|
|
env_(ORT_LOGGING_LEVEL_ERROR),
|
|
sess_opts_(GetSessionOptions(config)),
|
|
allocator_{} {
|
|
auto buf = ReadFile(mgr, config_.nemo_ctc.model);
|
|
Init(buf.data(), buf.size());
|
|
}
|
|
|
|
std::vector<Ort::Value> Forward(Ort::Value features,
|
|
Ort::Value features_length) {
|
|
std::vector<int64_t> shape =
|
|
features_length.GetTensorTypeAndShapeInfo().GetShape();
|
|
|
|
Ort::Value out_features_length = Ort::Value::CreateTensor<int64_t>(
|
|
allocator_, shape.data(), shape.size());
|
|
|
|
const int64_t *src = features_length.GetTensorData<int64_t>();
|
|
int64_t *dst = out_features_length.GetTensorMutableData<int64_t>();
|
|
for (int64_t i = 0; i != shape[0]; ++i) {
|
|
dst[i] = src[i] / subsampling_factor_;
|
|
}
|
|
|
|
// (B, T, C) -> (B, C, T)
|
|
features = Transpose12(allocator_, &features);
|
|
|
|
std::array<Ort::Value, 2> inputs = {std::move(features),
|
|
std::move(features_length)};
|
|
auto out =
|
|
sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
|
|
output_names_ptr_.data(), output_names_ptr_.size());
|
|
|
|
std::vector<Ort::Value> ans;
|
|
ans.reserve(2);
|
|
ans.push_back(std::move(out[0]));
|
|
ans.push_back(std::move(out_features_length));
|
|
return ans;
|
|
}
|
|
|
|
int32_t VocabSize() const { return vocab_size_; }
|
|
|
|
int32_t SubsamplingFactor() const { return subsampling_factor_; }
|
|
|
|
OrtAllocator *Allocator() { return allocator_; }
|
|
|
|
std::string FeatureNormalizationMethod() const { return normalize_type_; }
|
|
|
|
bool IsGigaAM() const { return is_giga_am_; }
|
|
|
|
private:
|
|
void Init(void *model_data, size_t model_data_length) {
|
|
sess_ = std::make_unique<Ort::Session>(env_, model_data, model_data_length,
|
|
sess_opts_);
|
|
|
|
GetInputNames(sess_.get(), &input_names_, &input_names_ptr_);
|
|
|
|
GetOutputNames(sess_.get(), &output_names_, &output_names_ptr_);
|
|
|
|
// get meta data
|
|
Ort::ModelMetadata meta_data = sess_->GetModelMetadata();
|
|
if (config_.debug) {
|
|
std::ostringstream os;
|
|
PrintModelMetadata(os, meta_data);
|
|
#if __OHOS__
|
|
SHERPA_ONNX_LOGE("%{public}s\n", os.str().c_str());
|
|
#else
|
|
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
|
|
#endif
|
|
}
|
|
|
|
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
|
|
SHERPA_ONNX_READ_META_DATA(vocab_size_, "vocab_size");
|
|
SHERPA_ONNX_READ_META_DATA(subsampling_factor_, "subsampling_factor");
|
|
SHERPA_ONNX_READ_META_DATA_STR_ALLOW_EMPTY(normalize_type_,
|
|
"normalize_type");
|
|
SHERPA_ONNX_READ_META_DATA_WITH_DEFAULT(is_giga_am_, "is_giga_am", 0);
|
|
}
|
|
|
|
private:
|
|
OfflineModelConfig config_;
|
|
Ort::Env env_;
|
|
Ort::SessionOptions sess_opts_;
|
|
Ort::AllocatorWithDefaultOptions allocator_;
|
|
|
|
std::unique_ptr<Ort::Session> sess_;
|
|
|
|
std::vector<std::string> input_names_;
|
|
std::vector<const char *> input_names_ptr_;
|
|
|
|
std::vector<std::string> output_names_;
|
|
std::vector<const char *> output_names_ptr_;
|
|
|
|
int32_t vocab_size_ = 0;
|
|
int32_t subsampling_factor_ = 0;
|
|
std::string normalize_type_;
|
|
|
|
// it is 1 for models from
|
|
// https://github.com/salute-developers/GigaAM
|
|
int32_t is_giga_am_ = 0;
|
|
};
|
|
|
|
OfflineNemoEncDecCtcModel::OfflineNemoEncDecCtcModel(
|
|
const OfflineModelConfig &config)
|
|
: impl_(std::make_unique<Impl>(config)) {}
|
|
|
|
template <typename Manager>
|
|
OfflineNemoEncDecCtcModel::OfflineNemoEncDecCtcModel(
|
|
Manager *mgr, const OfflineModelConfig &config)
|
|
: impl_(std::make_unique<Impl>(mgr, config)) {}
|
|
|
|
OfflineNemoEncDecCtcModel::~OfflineNemoEncDecCtcModel() = default;
|
|
|
|
std::vector<Ort::Value> OfflineNemoEncDecCtcModel::Forward(
|
|
Ort::Value features, Ort::Value features_length) {
|
|
return impl_->Forward(std::move(features), std::move(features_length));
|
|
}
|
|
|
|
int32_t OfflineNemoEncDecCtcModel::VocabSize() const {
|
|
return impl_->VocabSize();
|
|
}
|
|
int32_t OfflineNemoEncDecCtcModel::SubsamplingFactor() const {
|
|
return impl_->SubsamplingFactor();
|
|
}
|
|
|
|
OrtAllocator *OfflineNemoEncDecCtcModel::Allocator() const {
|
|
return impl_->Allocator();
|
|
}
|
|
|
|
std::string OfflineNemoEncDecCtcModel::FeatureNormalizationMethod() const {
|
|
return impl_->FeatureNormalizationMethod();
|
|
}
|
|
|
|
bool OfflineNemoEncDecCtcModel::IsGigaAM() const { return impl_->IsGigaAM(); }
|
|
|
|
#if __ANDROID_API__ >= 9
|
|
template OfflineNemoEncDecCtcModel::OfflineNemoEncDecCtcModel(
|
|
AAssetManager *mgr, const OfflineModelConfig &config);
|
|
#endif
|
|
|
|
#if __OHOS__
|
|
template OfflineNemoEncDecCtcModel::OfflineNemoEncDecCtcModel(
|
|
NativeResourceManager *mgr, const OfflineModelConfig &config);
|
|
#endif
|
|
|
|
} // namespace sherpa_onnx
|