goddamnVincent 47a2dd4cf8
'update20241203' (#1589)
add '--modeling-unit' and "--bpe-vocab" to /sherpa-onnx/python-api-examples/streaming_server.py make it specifiable.
2024-12-04 09:22:24 +08:00

886 lines
28 KiB
Python
Executable File
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# Copyright 2022-2023 Xiaomi Corp.
#
"""
A server for streaming ASR recognition. By streaming it means the audio samples
are coming in real-time. You don't need to wait until all audio samples are
captured before sending them for recognition.
It supports multiple clients sending at the same time.
Usage:
./streaming_server.py --help
Example:
(1) Without a certificate
python3 ./python-api-examples/streaming_server.py \
--encoder ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/encoder-epoch-99-avg-1.onnx \
--decoder ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/decoder-epoch-99-avg-1.onnx \
--joiner ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/joiner-epoch-99-avg-1.onnx \
--tokens ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/tokens.txt
(2) With a certificate
(a) Generate a certificate first:
cd python-api-examples/web
./generate-certificate.py
cd ../..
(b) Start the server
python3 ./python-api-examples/streaming_server.py \
--encoder ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/encoder-epoch-99-avg-1.onnx \
--decoder ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/decoder-epoch-99-avg-1.onnx \
--joiner ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/joiner-epoch-99-avg-1.onnx \
--tokens ./sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20/tokens.txt \
--certificate ./python-api-examples/web/cert.pem
Please refer to
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-transducer/index.html
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/wenet/index.html
to download pre-trained models.
The model in the above help messages is from
https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-transducer/zipformer-transducer-models.html#csukuangfj-sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20-bilingual-chinese-english
To use a WeNet streaming Conformer CTC model, please use
python3 ./python-api-examples/streaming_server.py \
--tokens=./sherpa-onnx-zh-wenet-wenetspeech/tokens.txt \
--wenet-ctc=./sherpa-onnx-zh-wenet-wenetspeech/model-streaming.onnx
"""
import argparse
import asyncio
import http
import json
import logging
import socket
import ssl
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from pathlib import Path
from typing import List, Optional, Tuple
import numpy as np
import sherpa_onnx
import websockets
from http_server import HttpServer
def setup_logger(
log_filename: str,
log_level: str = "info",
use_console: bool = True,
) -> None:
"""Setup log level.
Args:
log_filename:
The filename to save the log.
log_level:
The log level to use, e.g., "debug", "info", "warning", "error",
"critical"
use_console:
True to also print logs to console.
"""
now = datetime.now()
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
log_filename = f"{log_filename}-{date_time}.txt"
Path(log_filename).parent.mkdir(parents=True, exist_ok=True)
level = logging.ERROR
if log_level == "debug":
level = logging.DEBUG
elif log_level == "info":
level = logging.INFO
elif log_level == "warning":
level = logging.WARNING
elif log_level == "critical":
level = logging.CRITICAL
logging.basicConfig(
filename=log_filename,
format=formatter,
level=level,
filemode="w",
)
if use_console:
console = logging.StreamHandler()
console.setLevel(level)
console.setFormatter(logging.Formatter(formatter))
logging.getLogger("").addHandler(console)
def add_model_args(parser: argparse.ArgumentParser):
parser.add_argument(
"--encoder",
type=str,
help="Path to the transducer encoder model",
)
parser.add_argument(
"--decoder",
type=str,
help="Path to the transducer decoder model.",
)
parser.add_argument(
"--joiner",
type=str,
help="Path to the transducer joiner model.",
)
parser.add_argument(
"--zipformer2-ctc",
type=str,
help="Path to the model file from zipformer2 ctc",
)
parser.add_argument(
"--wenet-ctc",
type=str,
help="Path to the model.onnx from WeNet",
)
parser.add_argument(
"--paraformer-encoder",
type=str,
help="Path to the paraformer encoder model",
)
parser.add_argument(
"--paraformer-decoder",
type=str,
help="Path to the paraformer decoder model.",
)
parser.add_argument(
"--tokens",
type=str,
required=True,
help="Path to tokens.txt",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="Sample rate of the data used to train the model. "
"Caution: If your input sound files have a different sampling rate, "
"we will do resampling inside",
)
parser.add_argument(
"--feat-dim",
type=int,
default=80,
help="Feature dimension of the model",
)
parser.add_argument(
"--provider",
type=str,
default="cpu",
help="Valid values: cpu, cuda, coreml",
)
def add_decoding_args(parser: argparse.ArgumentParser):
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Decoding method to use. Current supported methods are:
- greedy_search
- modified_beam_search
""",
)
add_modified_beam_search_args(parser)
def add_hotwords_args(parser: argparse.ArgumentParser):
parser.add_argument(
"--hotwords-file",
type=str,
default="",
help="""
The file containing hotwords, one words/phrases per line, and for each
phrase the bpe/cjkchar are separated by a space. For example:
▁HE LL O ▁WORLD
你 好 世 界
""",
)
parser.add_argument(
"--hotwords-score",
type=float,
default=1.5,
help="""
The hotword score of each token for biasing word/phrase. Used only if
--hotwords-file is given.
""",
)
parser.add_argument(
"--modeling-unit",
type=str,
default='cjkchar',
help="""
The modeling unit of the used model. Current supported units are:
- cjkchar(for Chinese)
- bpe(for English like languages)
- cjkchar+bpe(for multilingual models)
""",
)
parser.add_argument(
"--bpe-vocab",
type=str,
default='',
help="""
The bpe vocabulary generated by sentencepiece toolkit.
It is only used when modeling-unit is bpe or cjkchar+bpe.
if you cant find bpe.vocab in the model directory, please run:
python script/export_bpe_vocab.py --bpe-model exp/bpe.model
""",
)
def add_modified_beam_search_args(parser: argparse.ArgumentParser):
parser.add_argument(
"--num-active-paths",
type=int,
default=4,
help="""Used only when --decoding-method is modified_beam_search.
It specifies number of active paths to keep during decoding.
""",
)
def add_blank_penalty_args(parser: argparse.ArgumentParser):
parser.add_argument(
"--blank-penalty",
type=float,
default=0.0,
help="""
The penalty applied on blank symbol during decoding.
Note: It is a positive value that would be applied to logits like
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
[batch_size, vocab] and blank id is 0).
""",
)
def add_endpointing_args(parser: argparse.ArgumentParser):
parser.add_argument(
"--use-endpoint",
type=int,
default=1,
help="1 to enable endpoiting. 0 to disable it",
)
parser.add_argument(
"--rule1-min-trailing-silence",
type=float,
default=2.4,
help="""This endpointing rule1 requires duration of trailing silence
in seconds) to be >= this value""",
)
parser.add_argument(
"--rule2-min-trailing-silence",
type=float,
default=1.2,
help="""This endpointing rule2 requires duration of trailing silence in
seconds) to be >= this value.""",
)
parser.add_argument(
"--rule3-min-utterance-length",
type=float,
default=20,
help="""This endpointing rule3 requires utterance-length (in seconds)
to be >= this value.""",
)
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
add_model_args(parser)
add_decoding_args(parser)
add_endpointing_args(parser)
add_hotwords_args(parser)
add_blank_penalty_args(parser)
parser.add_argument(
"--port",
type=int,
default=6006,
help="The server will listen on this port",
)
parser.add_argument(
"--nn-pool-size",
type=int,
default=1,
help="Number of threads for NN computation and decoding.",
)
parser.add_argument(
"--max-batch-size",
type=int,
default=3,
help="""Max batch size for computation. Note if there are not enough
requests in the queue, it will wait for max_wait_ms time. After that,
even if there are not enough requests, it still sends the
available requests in the queue for computation.
""",
)
parser.add_argument(
"--max-wait-ms",
type=float,
default=10,
help="""Max time in millisecond to wait to build batches for inference.
If there are not enough requests in the stream queue to build a batch
of max_batch_size, it waits up to this time before fetching available
requests for computation.
""",
)
parser.add_argument(
"--max-message-size",
type=int,
default=(1 << 20),
help="""Max message size in bytes.
The max size per message cannot exceed this limit.
""",
)
parser.add_argument(
"--max-queue-size",
type=int,
default=32,
help="Max number of messages in the queue for each connection.",
)
parser.add_argument(
"--max-active-connections",
type=int,
default=200,
help="""Maximum number of active connections. The server will refuse
to accept new connections once the current number of active connections
equals to this limit.
""",
)
parser.add_argument(
"--num-threads",
type=int,
default=2,
help="Number of threads to run the neural network model",
)
parser.add_argument(
"--certificate",
type=str,
help="""Path to the X.509 certificate. You need it only if you want to
use a secure websocket connection, i.e., use wss:// instead of ws://.
You can use ./web/generate-certificate.py
to generate the certificate `cert.pem`.
Note ./web/generate-certificate.py will generate three files but you
only need to pass the generated cert.pem to this option.
""",
)
parser.add_argument(
"--doc-root",
type=str,
default="./python-api-examples/web",
help="Path to the web root",
)
return parser.parse_args()
def create_recognizer(args) -> sherpa_onnx.OnlineRecognizer:
if args.encoder:
recognizer = sherpa_onnx.OnlineRecognizer.from_transducer(
tokens=args.tokens,
encoder=args.encoder,
decoder=args.decoder,
joiner=args.joiner,
num_threads=args.num_threads,
sample_rate=args.sample_rate,
feature_dim=args.feat_dim,
decoding_method=args.decoding_method,
max_active_paths=args.num_active_paths,
hotwords_score=args.hotwords_score,
hotwords_file=args.hotwords_file,
blank_penalty=args.blank_penalty,
enable_endpoint_detection=args.use_endpoint != 0,
rule1_min_trailing_silence=args.rule1_min_trailing_silence,
rule2_min_trailing_silence=args.rule2_min_trailing_silence,
rule3_min_utterance_length=args.rule3_min_utterance_length,
provider=args.provider,
modeling_unit=args.modeling_unit,
bpe_vocab=args.bpe_vocab
)
elif args.paraformer_encoder:
recognizer = sherpa_onnx.OnlineRecognizer.from_paraformer(
tokens=args.tokens,
encoder=args.paraformer_encoder,
decoder=args.paraformer_decoder,
num_threads=args.num_threads,
sample_rate=args.sample_rate,
feature_dim=args.feat_dim,
decoding_method=args.decoding_method,
enable_endpoint_detection=args.use_endpoint != 0,
rule1_min_trailing_silence=args.rule1_min_trailing_silence,
rule2_min_trailing_silence=args.rule2_min_trailing_silence,
rule3_min_utterance_length=args.rule3_min_utterance_length,
provider=args.provider,
)
elif args.zipformer2_ctc:
recognizer = sherpa_onnx.OnlineRecognizer.from_zipformer2_ctc(
tokens=args.tokens,
model=args.zipformer2_ctc,
num_threads=args.num_threads,
sample_rate=args.sample_rate,
feature_dim=args.feat_dim,
decoding_method=args.decoding_method,
enable_endpoint_detection=args.use_endpoint != 0,
rule1_min_trailing_silence=args.rule1_min_trailing_silence,
rule2_min_trailing_silence=args.rule2_min_trailing_silence,
rule3_min_utterance_length=args.rule3_min_utterance_length,
provider=args.provider,
)
elif args.wenet_ctc:
recognizer = sherpa_onnx.OnlineRecognizer.from_wenet_ctc(
tokens=args.tokens,
model=args.wenet_ctc,
num_threads=args.num_threads,
sample_rate=args.sample_rate,
feature_dim=args.feat_dim,
decoding_method=args.decoding_method,
enable_endpoint_detection=args.use_endpoint != 0,
rule1_min_trailing_silence=args.rule1_min_trailing_silence,
rule2_min_trailing_silence=args.rule2_min_trailing_silence,
rule3_min_utterance_length=args.rule3_min_utterance_length,
provider=args.provider,
)
else:
raise ValueError("Please provide a model")
return recognizer
def format_timestamps(timestamps: List[float]) -> List[str]:
return ["{:.3f}".format(t) for t in timestamps]
class StreamingServer(object):
def __init__(
self,
recognizer: sherpa_onnx.OnlineRecognizer,
nn_pool_size: int,
max_wait_ms: float,
max_batch_size: int,
max_message_size: int,
max_queue_size: int,
max_active_connections: int,
doc_root: str,
certificate: Optional[str] = None,
):
"""
Args:
recognizer:
An instance of online recognizer.
nn_pool_size:
Number of threads for the thread pool that is responsible for
neural network computation and decoding.
max_wait_ms:
Max wait time in milliseconds in order to build a batch of
`batch_size`.
max_batch_size:
Max batch size for inference.
max_message_size:
Max size in bytes per message.
max_queue_size:
Max number of messages in the queue for each connection.
max_active_connections:
Max number of active connections. Once number of active client
equals to this limit, the server refuses to accept new connections.
beam_search_params:
Dictionary containing all the parameters for beam search.
online_endpoint_config:
Config for endpointing.
doc_root:
Path to the directory where files like index.html for the HTTP
server locate.
certificate:
Optional. If not None, it will use secure websocket.
You can use ./web/generate-certificate.py to generate
it (the default generated filename is `cert.pem`).
"""
self.recognizer = recognizer
self.certificate = certificate
self.http_server = HttpServer(doc_root)
self.nn_pool_size = nn_pool_size
self.nn_pool = ThreadPoolExecutor(
max_workers=nn_pool_size,
thread_name_prefix="nn",
)
self.stream_queue = asyncio.Queue()
self.max_wait_ms = max_wait_ms
self.max_batch_size = max_batch_size
self.max_message_size = max_message_size
self.max_queue_size = max_queue_size
self.max_active_connections = max_active_connections
self.current_active_connections = 0
self.sample_rate = int(recognizer.config.feat_config.sampling_rate)
async def stream_consumer_task(self):
"""This function extracts streams from the queue, batches them up, sends
them to the neural network model for computation and decoding.
"""
while True:
if self.stream_queue.empty():
await asyncio.sleep(self.max_wait_ms / 1000)
continue
batch = []
try:
while len(batch) < self.max_batch_size:
item = self.stream_queue.get_nowait()
assert self.recognizer.is_ready(item[0])
batch.append(item)
except asyncio.QueueEmpty:
pass
stream_list = [b[0] for b in batch]
future_list = [b[1] for b in batch]
loop = asyncio.get_running_loop()
await loop.run_in_executor(
self.nn_pool,
self.recognizer.decode_streams,
stream_list,
)
for f in future_list:
self.stream_queue.task_done()
f.set_result(None)
async def compute_and_decode(
self,
stream: sherpa_onnx.OnlineStream,
) -> None:
"""Put the stream into the queue and wait it to be processed by the
consumer task.
Args:
stream:
The stream to be processed. Note: It is changed in-place.
"""
loop = asyncio.get_running_loop()
future = loop.create_future()
await self.stream_queue.put((stream, future))
await future
async def process_request(
self,
path: str,
request_headers: websockets.Headers,
) -> Optional[Tuple[http.HTTPStatus, websockets.Headers, bytes]]:
if "sec-websocket-key" not in (
request_headers.headers # For new request_headers
if hasattr(request_headers, "headers")
else request_headers # For old request_headers
):
# This is a normal HTTP request
if path == "/":
path = "/index.html"
if path in ("/upload.html", "/offline_record.html"):
response = r"""
<!doctype html><html><head>
<title>Speech recognition with next-gen Kaldi</title><body>
<h2>Only /streaming_record.html is available for the streaming server.<h2>
<br/>
<br/>
Go back to <a href="/streaming_record.html">/streaming_record.html</a>
</body></head></html>
"""
found = True
mime_type = "text/html"
else:
found, response, mime_type = self.http_server.process_request(path)
if isinstance(response, str):
response = response.encode("utf-8")
if not found:
status = http.HTTPStatus.NOT_FOUND
else:
status = http.HTTPStatus.OK
header = {"Content-Type": mime_type}
return status, header, response
if self.current_active_connections < self.max_active_connections:
self.current_active_connections += 1
return None
# Refuse new connections
status = http.HTTPStatus.SERVICE_UNAVAILABLE # 503
header = {"Hint": "The server is overloaded. Please retry later."}
response = b"The server is busy. Please retry later."
return status, header, response
async def run(self, port: int):
tasks = []
for i in range(self.nn_pool_size):
tasks.append(asyncio.create_task(self.stream_consumer_task()))
if self.certificate:
logging.info(f"Using certificate: {self.certificate}")
ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)
ssl_context.load_cert_chain(self.certificate)
else:
ssl_context = None
logging.info("No certificate provided")
async with websockets.serve(
self.handle_connection,
host="",
port=port,
max_size=self.max_message_size,
max_queue=self.max_queue_size,
process_request=self.process_request,
ssl=ssl_context,
):
ip_list = ["localhost"]
if ssl_context:
ip_list += ["0.0.0.0", "127.0.0.1"]
ip_list.append(socket.gethostbyname(socket.gethostname()))
proto = "http://" if ssl_context is None else "https://"
s = "Please visit one of the following addresses:\n\n"
for p in ip_list:
s += " " + proto + p + f":{port}" "\n"
if not ssl_context:
s += "\nSince you are not providing a certificate, you cannot "
s += "use your microphone from within the browser using "
s += "public IP addresses. Only localhost can be used."
s += "You also cannot use 0.0.0.0 or 127.0.0.1"
logging.info(s)
await asyncio.Future() # run forever
await asyncio.gather(*tasks) # not reachable
async def handle_connection(
self,
socket: websockets.WebSocketServerProtocol,
):
"""Receive audio samples from the client, process it, and send
decoding result back to the client.
Args:
socket:
The socket for communicating with the client.
"""
try:
await self.handle_connection_impl(socket)
except websockets.exceptions.ConnectionClosedError:
logging.info(f"{socket.remote_address} disconnected")
finally:
# Decrement so that it can accept new connections
self.current_active_connections -= 1
logging.info(
f"Disconnected: {socket.remote_address}. "
f"Number of connections: {self.current_active_connections}/{self.max_active_connections}" # noqa
)
async def handle_connection_impl(
self,
socket: websockets.WebSocketServerProtocol,
):
"""Receive audio samples from the client, process it, and send
decoding result back to the client.
Args:
socket:
The socket for communicating with the client.
"""
logging.info(
f"Connected: {socket.remote_address}. "
f"Number of connections: {self.current_active_connections}/{self.max_active_connections}" # noqa
)
stream = self.recognizer.create_stream()
segment = 0
while True:
samples = await self.recv_audio_samples(socket)
if samples is None:
break
# TODO(fangjun): At present, we assume the sampling rate
# of the received audio samples equal to --sample-rate
stream.accept_waveform(sample_rate=self.sample_rate, waveform=samples)
while self.recognizer.is_ready(stream):
await self.compute_and_decode(stream)
result = self.recognizer.get_result(stream)
message = {
"text": result,
"segment": segment,
}
if self.recognizer.is_endpoint(stream):
self.recognizer.reset(stream)
segment += 1
await socket.send(json.dumps(message))
tail_padding = np.zeros(int(self.sample_rate * 0.3)).astype(np.float32)
stream.accept_waveform(sample_rate=self.sample_rate, waveform=tail_padding)
stream.input_finished()
while self.recognizer.is_ready(stream):
await self.compute_and_decode(stream)
result = self.recognizer.get_result(stream)
message = {
"text": result,
"segment": segment,
}
await socket.send(json.dumps(message))
async def recv_audio_samples(
self,
socket: websockets.WebSocketServerProtocol,
) -> Optional[np.ndarray]:
"""Receive a tensor from the client.
Each message contains either a bytes buffer containing audio samples
in 16 kHz or contains "Done" meaning the end of utterance.
Args:
socket:
The socket for communicating with the client.
Returns:
Return a 1-D np.float32 tensor containing the audio samples or
return None.
"""
message = await socket.recv()
if message == "Done":
return None
return np.frombuffer(message, dtype=np.float32)
def check_args(args):
if args.encoder:
assert Path(args.encoder).is_file(), f"{args.encoder} does not exist"
assert Path(args.decoder).is_file(), f"{args.decoder} does not exist"
assert Path(args.joiner).is_file(), f"{args.joiner} does not exist"
assert args.paraformer_encoder is None, args.paraformer_encoder
assert args.paraformer_decoder is None, args.paraformer_decoder
assert args.zipformer2_ctc is None, args.zipformer2_ctc
assert args.wenet_ctc is None, args.wenet_ctc
elif args.paraformer_encoder:
assert Path(
args.paraformer_encoder
).is_file(), f"{args.paraformer_encoder} does not exist"
assert Path(
args.paraformer_decoder
).is_file(), f"{args.paraformer_decoder} does not exist"
elif args.zipformer2_ctc:
assert Path(
args.zipformer2_ctc
).is_file(), f"{args.zipformer2_ctc} does not exist"
elif args.wenet_ctc:
assert Path(args.wenet_ctc).is_file(), f"{args.wenet_ctc} does not exist"
else:
raise ValueError("Please provide a model")
if not Path(args.tokens).is_file():
raise ValueError(f"{args.tokens} does not exist")
if args.decoding_method not in (
"greedy_search",
"modified_beam_search",
):
raise ValueError(f"Unsupported decoding method {args.decoding_method}")
if args.decoding_method == "modified_beam_search":
assert args.num_active_paths > 0, args.num_active_paths
def main():
args = get_args()
logging.info(vars(args))
check_args(args)
recognizer = create_recognizer(args)
port = args.port
nn_pool_size = args.nn_pool_size
max_batch_size = args.max_batch_size
max_wait_ms = args.max_wait_ms
max_message_size = args.max_message_size
max_queue_size = args.max_queue_size
max_active_connections = args.max_active_connections
certificate = args.certificate
doc_root = args.doc_root
if certificate and not Path(certificate).is_file():
raise ValueError(f"{certificate} does not exist")
if not Path(doc_root).is_dir():
raise ValueError(f"Directory {doc_root} does not exist")
server = StreamingServer(
recognizer=recognizer,
nn_pool_size=nn_pool_size,
max_batch_size=max_batch_size,
max_wait_ms=max_wait_ms,
max_message_size=max_message_size,
max_queue_size=max_queue_size,
max_active_connections=max_active_connections,
certificate=certificate,
doc_root=doc_root,
)
asyncio.run(server.run(port))
if __name__ == "__main__":
log_filename = "log/log-streaming-server"
setup_logger(log_filename)
main()