vadimdddd 4209f3a9fe
Vosk model loader(#871) (#941)
* methods get_model_by_name, get_model_by_lang, get_model were added into the model class

* importing modules changed to using components; introduced constant MODELS_HOME_DIR; simplified code

* added new model folders into init; changed samples and transcriber bin for new mode loader

* changed back in cli.py lang arg to args.lang

* added 3 directories instead of 1 to check for models

* cli.py: added 3 args instead of 1 for model; __init__.py: changed script get_model_path for run get_model_by_name/lang inside current directory

* deleted default env var

* cli.py: changed arg_name; __init__.py: changed const name, changed model loading only for last directory

* deleted unused method

* changed by_name, by_lang methods, added download_model method

* deleted env variable initialization

* deleted print()

* deteled unused modules

* added progress_bar, added folder AppData/Local/vosk for model search

* changed download_model methond; added my_hook method
2022-05-24 21:06:13 +03:00

68 lines
1.6 KiB
Python
Executable File

#!/usr/bin/env python3
from vosk import Model, KaldiRecognizer, SetLogLevel
from webvtt import WebVTT, Caption
import sys
import os
import subprocess
import json
import textwrap
SetLogLevel(-1)
sample_rate = 16000
model = Model(lang="en-us")
rec = KaldiRecognizer(model, sample_rate)
rec.SetWords(True)
WORDS_PER_LINE = 7
def timeString(seconds):
minutes = seconds / 60
seconds = seconds % 60
hours = int(minutes / 60)
minutes = int(minutes % 60)
return '%i:%02i:%06.3f' % (hours, minutes, seconds)
def transcribe():
command = ['ffmpeg', '-nostdin', '-loglevel', 'quiet', '-i', sys.argv[1],
'-ar', str(sample_rate), '-ac', '1', '-f', 's16le', '-']
process = subprocess.Popen(command, stdout=subprocess.PIPE)
results = []
while True:
data = process.stdout.read(4000)
if len(data) == 0:
break
if rec.AcceptWaveform(data):
results.append(rec.Result())
results.append(rec.FinalResult())
vtt = WebVTT()
for i, res in enumerate(results):
words = json.loads(res).get('result')
if not words:
continue
start = timeString(words[0]['start'])
end = timeString(words[-1]['end'])
content = ' '.join([w['word'] for w in words])
caption = Caption(start, end, textwrap.fill(content))
vtt.captions.append(caption)
# save or return webvtt
if len(sys.argv) > 2:
vtt.save(sys.argv[2])
else:
print(vtt.content)
if __name__ == '__main__':
if not (1 < len(sys.argv) < 4):
print(f'Usage: {sys.argv[0]} audiofile [output file]')
exit(1)
transcribe()