mirror of
https://github.com/alphacep/vosk-api.git
synced 2026-01-09 07:32:34 +08:00
62 lines
1.4 KiB
Python
Executable File
62 lines
1.4 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import sys
|
|
import json
|
|
|
|
from vosk import BatchModel, BatchRecognizer, GpuInit
|
|
from timeit import default_timer as timer
|
|
|
|
TOT_SAMPLES = 0
|
|
|
|
GpuInit()
|
|
|
|
model = BatchModel("model")
|
|
|
|
with open(sys.argv[1]) as fn:
|
|
fnames = fn.readlines()
|
|
fds = [open(x.strip(), "rb") for x in fnames]
|
|
uids = [fname.strip().split("/")[-1][:-4] for fname in fnames]
|
|
recs = [BatchRecognizer(model, 16000) for x in fnames]
|
|
results = [""] * len(fnames)
|
|
|
|
ended = set()
|
|
|
|
start_time = timer()
|
|
|
|
while True:
|
|
|
|
# Feed in the data
|
|
for i, fd in enumerate(fds):
|
|
if i in ended:
|
|
continue
|
|
data = fd.read(8000)
|
|
if len(data) == 0:
|
|
recs[i].FinishStream()
|
|
ended.add(i)
|
|
continue
|
|
recs[i].AcceptWaveform(data)
|
|
TOT_SAMPLES += len(data)
|
|
|
|
# Wait for results from CUDA
|
|
model.Wait()
|
|
|
|
# Retrieve and add results
|
|
for i, fd in enumerate(fds):
|
|
res = recs[i].Result()
|
|
if len(res) != 0:
|
|
results[i] = results[i] + " " + json.loads(res)["text"]
|
|
|
|
if len(ended) == len(fds):
|
|
break
|
|
|
|
end_time = timer()
|
|
|
|
for i, res in enumerate(results):
|
|
print(uids[i], res.strip())
|
|
|
|
print("Processed %.3f seconds of audio in %.3f seconds (%.3f xRT)"
|
|
% (TOT_SAMPLES / 16000.0 / 2,
|
|
end_time - start_time,
|
|
(TOT_SAMPLES / 16000.0 / 2 / (end_time - start_time))),
|
|
file=sys.stderr)
|